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This book is dedicated to the basics of hacking—methods of analyzing programs using a debugger and disassembler. There
is huge interest in this topic, but in reality, there are very few programmers who have mastered these methods on a
professional level.

The majority of publications that touch on issues of analyzing and optimizing programs, as well as creating means of
protecting information, delicately tiptoe around the fact that in order to competently find "holes" in a program without having
its source code, you have to disassemble them. Restoring something that even somewhat resembles the source code is still
considered an extremely complex task. In the book, the author describes a technology used by hackers that gives a
practically identical source code, and this includes programs in C++ as well, which are particularly difficult to disassemble.

The book gives a detailed description of ways to identify and reconstruct key structures of the source language—functions
(including virtual ones), local and global variables, branching, loops, objects and their hierarchy, mathematical operators, etc.
The disassembly methodology that we will look at has been formalized—i.e., it has been translated from an intuitive concept
into a complete technology, available and comprehensible to almost anyone.

The book contains a large number of unique practical materials. It is organized in such a manner that it will most certainly be
useful to the everyday programmer as a manual on optimizing programs for modern intelligent compilers, and to the
information protection specialist as a manual on looking for so-called "bugs." The "from simple to complex" style of the book
allows it to easily be used as a textbook for beginner analyzers and "code diggers."

About the Editor

Kris Kaspersky is the author of articles on hacking, disassembling, and code optimization. He has dealt with issues relating to
security and system programming including compiler development, optimization techniques, security mechanism research,
real-time OS kernel creation, and writing antivirus programs.
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Preface

This book opens the door to the wonderful world of security mechanisms, showing you how protection is created, and
then bypassed. It is addressed to anyone who likes captivating puzzles, and to anyone who spends their spare (or
office) time rummaging in the depths of programs and operating systems. Lastly, it is for anyone who is engaged
constantly or incidentally in writing protections, and who wants to know how to counteract ubiquitous hackers
competently and reliably.

This book is devoted to hacking basics — to the skills needed for working with a debugger and a disassembler. The
methods of identifying and reconstructing the key structures of the source language — functions (including virtual
ones), local and global variables, branches, cycles, objects and their hierarchies, mathematical operators, etc. — are
described in detail.

Choosing the tools you will need to use this book is essentially a matter of your personal preferences. Tastes differ.
Therefore, don't take everything that | mention below to be carved in stone, but rather as advice. To use this book,
you'll need the following:

B A debugger—Softice, version 3.25 or higher

B A disassembler— IDAversion 3.7x (I recommend 3.8; 4.x is even better)

B A HEX editor— any version of HIEW

B Development kits—SDK and DDK (the last one isn't mandatory, but is really good to have)
B An operating system— any Windows, but Windows 2000 or later is strongly recommended

B A compiler—whichever C/C++ or Pascal compiler you like most (in the book, you'll find a detailed
description of the particular features of the Microsoft Visual C++, Borland C++, Watcom C, GNU C,
and Free Pascal compilers, although we will mostly work with Microsoft Visual C++ 6.0)

Now, let's talk about all this in more detail:

B Softice. The Softice debugger is the hacker's main weapon. There are also free programs —
WINDEB from Microsoft, and TRW from LiuTaoTao — but Softlce is much better, and handier, than
all these taken together. Almost any version of Ice will suit our purposes; | use version 3.26 — it's
time-tested, maintains its stability, and gets along wonderfully with Windows 2000. The modern 4.x
version isn't very friendly with my video adapter (Matrox Millennium G450), and in general goes belly
up from time to time. Apart from this, among all the new capabilities of the fourth version, only the
support of Frame Point Omission (FPO) (see the "Local Stack Variables" section) is particularly useful
for working with the local variables directly addressed through the ESP register. This is an
undoubtedly practical feature, but we can do without it if we must. Buy it; you won't regret it. (Hacking
isn't the same as piracy, and nobody has yet cancelled honesty.)

B DA Pro. The most powerful disassembler in the world is undoubtedly IDA. It's certainly possible to
live without it, but it's much better to live with it. IDA provides convenient facilities for navigating the
investigated text; automatically recognizes library functions and local variables, including those
addressed through ESP; and supports many processors and file formats. In a word, a hacker without
IDA isn't a hacker. But | suppose advertising it really isn't necessary. The only problem is, how do you
get this IDA? Pirated discs containing it are extremely rare (the latest version I've seen was 3.74, and
it was unstable); Internet sites offer it even less often. IDA's developer quickly stops any attempt at
unauthorizi]d distribution of the product. The only reliable way to obtain it is to purchase it from the
developer (http//www.idapro.cony) or from an official distributor. Unfortunately, no documentation

comes with the disassembler (except for the built-in help, which is very terse and unsystematic).

HIEW. HIEW is not only a HEX editor; it is a disassembler, an assembler, and an encrypter all in one.
It won't save you from having to buy IDA, but it will more than compensate for IDA in certain cases.
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(IDA works very slowly, and it's vexing to waste a whole bunch of time if all we need is to take a quick
glance at the file under preparation.) However, the main purpose of HIEW isn't disassembling, but bit
hacking— small surgical interference in a binary file, usually with the aim of cutting off part of the
protection mechanism without which it can't function.

B SDK (Software Development Kit — a package for the application developer). The main thing that we
need from the SDK package is documentation on the Win32 API and the DUMPBIN utility for working
with PE files. Neither hackers nor developers can do without documentation. At the minimum, you
need to know the prototypes and the purpose of the main system functions. This information can be
gathered from numerous books on programming, but no book can boast of completeness and depth
of presentation. Therefore, sooner or later, you'll have to use an SDK. How can you get an SDK?
SDK is a part of MSDN, and MSDN is issued quarterly on compact discs, and is distributed by
Iiubsg['p_tign, (You can learn more about subscription conditions on the official site

ttp//msdn.microsoft.com.) MSDN also comes with the Microsoft Visual C++ 6.0 compiler. (It's not a

particularly new one, but it will suffice for going through this book.)

B pDK (Driver Development Kit — a package for a developer of drivers). What is the use of a DDK
package for a hacker? It'll help to clear up how the driver is made, how it works, and how can it be
cracked. Apart from the basic documentation and plenty of samples, it includes a very valuable file
—NTDDK.h. This file contains definitions for most of the undocumented structures, and is literally
loaded with comments revealing certain curious details of the system's operation. The tools that come
with the DDK will also be of use. Among other things, you'll find the WINDEB debugger included in the
DDK. This is a rather good debugger, but nowhere near as good as Softlce; therefore, it is not
considered in this book. (If you can't find Ice, WINDEB will do.) The MASM assembler in which drivers
are written will be useful, as will certain little programs that make the hacker's life a bit easier. The
latest DDK version can be downloaded for free from Microsoft's site; just keep in mind that the size of
the complete DDK for NT is over 40 MB (packed), and even more space is required on the disk.

B Operating system. I'm not going to force my own tastes and predilections on the reader; nevertheless,
| strongly recommend that you install Windows 2000 or a later version. My motivation here is that it's a
very stable and steadily working operating system, which courageously withstands severe application
errors. One thing about a hacker's work is that this surgical interference in the depths of programs
quite often makes them go crazy, which results in the unpredictable behavior of the cracked
application. Windows 9x operating systems, showing their corporative solidarity, frequently "go on
strike" alongside the frozen program. Occasionally, the computer will require rebooting dozens of
times a day! You should consider yourself lucky if rebooting suffices, and you don't need to restore
disks that were destroyed by failure. (This also happens, although seldom.) It's much more difficult to
freeze Windows 2000. | "succeed" in doing this no more than twice a month when | haven't had
enough sleep, or am negligent. What's more, Windows 2000 allows you to load Softice at any
moment, without rebooting the system, which is very convenient! Lastly, all the material in this book
implies the use of Windows 2000 or a later version, and | rarely mention how it differs from other
systems.

| assume that you are already familiar with the assembler. If you don't write programs in this language, you should at
least understand what registers, segments, machine instructions, and the like are. Otherwise, this book will likely be
too complex and difficult to understand. | suggest that you first find a tutorial on the assembler and thoroughly study it.

Apart from assembler, you should have at least a general notion of the operating system.
And it might be useful if you download all the documentation on processors available from the Intel and AMD sites.

| guess that's enough organizational stuff. Let's get going.
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Introduction

Protection Classifications

Checking authenticity is the "heart" of the overwhelming majority of protection mechanisms. In all cases, we have to
make sure that the person working with our program is who he or she claims to be, and that this person is authorized
to work with the program. The word "person” might mean not only a user, but the user's computer or the medium that
stores a licensed copy of the program. Thus, all protection mechanisms can be divided into two main categories:

B protection based on knowledge (of a password, serial number, etc.)
B protection based on possession (of a key disc, documentation, etc.)

Knowledge-based protection is useless if a legitimate owner isn't interested in keeping the secret. An owner can give
the password (and/or serial number) to whomever he or she likes, and thus anyone can use a program with such
protection on his or her computer.

Therefore, password protection against illegal copying is not effective. Why, then, do practically all prominent software
manufacturers use serial numbers? The answer is simple—to protect their intellectual property with the threat
(however unlikely) of brute force. The idea goes approximately as follows: The quiet, work-a-day environment of a
certain company is suddenly broken into by a squad of agents dressed in camouflage, comparing the Windows license
numbers (Microsoft Office, Microsoft Visual Studio) to license agreements. If they find even one illegal copy, some
official pops up seemingly from out of nowhere and starts to joyfully rub his or her hands in anticipation of the
expected windfall. At best, they'll force the company to buy all the illegal copies. At worst...

Naturally, nobody is barging in on users in their homes, and nobody is even considering it (yet) — your house is still
your castle. Besides, what can you get from a domestic user? A wide distribution of products is good for
manufacturers, and who can distribute better than pirates? Even in that case, serial numbers aren't
superfluous—unregistered users cannot use technical support, which may push them to purchase legal versions.

Such protection is ideal for giant corporations, but it isn't suitable for small groups of programmers or individual
developers, especially if they earn their bread by writing highly specialized programs for a limited market (say, star
spectra analysis, or modeling nuclear reactions). Since they cannot apply sufficient pressure, it's unreal for them to ask
users to check their licenses, and it's hardly possible to "beat" the payment out of illegal users. All that can be done is
through threat and eloquence.

In this case, protection based on the possession of some unigue subject that is extremely difficult to copy, or
impossible to copy in general (the ideal case), is more appropriate. The first of this kind were key floppies with
information written on them in such a manner that copying the floppy disk was impossible. The simplest way (but not
the best) to prepare such a floppy was to gently damage the disk with a nail (an awl, a penknife), and then, having
determined the sector in which the defect was located (by writing and reading any test information — up until a certain
point, reading will proceed normally, followed by "garbage"), register it in the program. Then, each time the program
started, it checked whether the defect was located in the same place or not. When floppy disks became less popular,
the same technique was used with compact discs. The more affluent cripple their discs with a laser, while ordinary folk
still use an awl or nail.

Thus, the program is rigidly bound to a disc, and requires its presence to run. Since copying such a disc is impossible
(just try making identical defects on a copy), pirates have to give up.

Other possession-based protection mechanisms frequently modify the subject of possession, limiting the number of
program starts or the duration of its use. Such a mechanism is often used in installers. So as to not irritate users, the
key is only requested once, when the program is installed, and it's possible to work without the key. If the number of
installations is limited, the damage arising from unauthorized installation of one copy on several computers can be
slight.

The problem is that all of this deprives a legal user of his or her rights. Who wants to limit the number of installations?



(Some people reinstall the operating system and software each month or even several times a day). In addition, key
discs are not recognized by all types of drives, and are frequently "invisible" devices on the network. If the protection
mechanism accesses the equipment directly, bypassing drivers in order to thwart hackers' attacks more effectively,
such a program definitely won't run under Windows NT/2000, and will probably fail under Windows 9x. (This is, of
course, if it wasn't designed appropriately beforehand. But such a case is even worse, since protection executing with
the highest privileges can cause considerable damage to the system.) Apart from that, the key item can be lost, stolen,
or just stop working correctly. (Floppy disks are inclined to demagnetize and develop bad clusters, CDs can get
scratched, and electronic keys can "burn out".)
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Figure 1: The main types of protection

Naturally, these considerations concern the effectiveness of keys in thwarting hackers, and not the concept of keys in
general. End users are none the better for this! If protection causes inconveniences, users would rather visit the
nearest pirate and buy illegal software. Speeches on morals, ethics, respectability, and so on won't have any effect.
Shame on you, developers! Why make users' lives even more complicated? Users are human beings too!

That said, protections based on registration numbers have been gaining popularity: Once run for the first time, the
program binds itself to the computer, turns on a "counter"”, and sometimes blocks certain functionalities. To make the
program fully functional, you have to enter a password from the developer in exchange for monetary compensation. To
prevent pirate copying, the password is often a derivative of key parameters of the user's computer (or a derivative of
their user name, in an elementary case).

Certainly, this brief overview of protection types has left many of them out, but a detailed discussion of protection
classifications is beyond the scope of this book. We'll leave it for a second volume.
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Protection Strength

If protection is based on the assumption that its code won't be investigated and/or changed, it's poor protection.
Concealing the source code isn't an insurmountable obstacle to studying and modifying the application. Modern
reverse engineering techniques automatically recognize library functions, local variables, stack arguments, data types,
branches, loops, etc. And, in the near future, disassemblers will probably be able to generate code similar in
appearance to that of high-level languages.

But, even today, analyzing machine code isn't so complex as to stop hackers for long. The overwhelming number of
constant cracks is the best testament to this. Ideally, knowing the protection algorithm shouldn't influence the
protection's strength, but this is not always possible to achieve. For example, if a server application has a limitation on
the number of simultaneous connections in a demo version (which frequently happens), all a hacker needs to do is
find the instruction of the process carrying out this check and delete it. Modification of a program can be detected and
prevented by testing the checksum regularly; however, the code that calculates the checksum and compares it to a
particular value can be found and deleted.

However many protection levels there are — one or one million — the program can be cracked! It's only a matter of
time and effort. But, when there are no effective laws protecting intellectual property, developers must rely on

protection more than law-enforcement bodies. There's a common opinion that if the expense of neutralizing protection
isn't lower than the cost of a legal copy, nobody will crack it. This is wrong! Material gain isn't the only motivation for a
hacker. Much stronger motivation appears to lie in the intellectual struggle(who's more clever: the protection developer
or me?), the competition (which hacker can crack more programs?), curiosity (what makes it tick?), advancing one's
own skills (to create protections, you first need to learn how to crack them), and simply as an interesting way to spend
one's time. Many young hackers spend weeks removing the protection from a program that only costs a few dollars, or
even one distributed free of charge.

The usefulness of protection is limited to its competition — other things being equal, clients always select unprotected
products, even if the protection doesn't restrain the client's rights. Nowadays, the demand for programmers
considerably exceeds supply, but, in the distant future, developers should either come to an agreement or completely
refuse to offer protection. Thus, protection experts will be forced to look for other work.

This doesn't mean that this book is useless; on the contrary, the knowledge that it provides should be applied as soon
as possible, while the need for protection hasn't disappeared yet.
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Step One: Warming up

The algorithm of simplest authentication consists of a character-by-character comparison of the password entered by
a user to the reference value stored either in the program (which frequently happens), or outside of it—for example, in
a configuration file or the registry (which happens less often).

The advantage of such protection is its extremely simple software implementation. Its core is actually only one line of
code that, in the C language, could be written as follows: if (strcmp (password entered, reference password)) {/* Password
is incorrect */} else {/* Password is OK*/}.

Let's supplement this code with procedures to prompt for a password and display the comparison, and then examine
the program for its vulnerability to cracking.

Listing 1: The Simplest System of Authentication

/I Matching the password character by character

#include <stdio.h>
#include <string.h>

#define PASSWORD_SIZE 100

#define PASSWORD  "myGOODpassword\n"
/I The CR above is needed

/I so as not to cut off

/I the user-entered CR.

int main ()

{

/I The counter for authentication failures
int count=0;

/I The buffer for the user-entered password
char buff [PASSWORD_SIZE];

/I The main authentication loop

for (;;)

{

/I Prompting the user for a password

/I and reading it

printf ("Enter password:");

fgets (&buff [0], PASSWORD_SIZE stdin);

/I Matching the entered password against the reference value
if (strcmp (&buff [0], PASSWORD))

// "Scolding" if the passwords don't match;

printf ("Wrong password\n");

/Il otherwise (if the passwords are identical),

/I getting out of the authentication loop

else break;

/I Incrementing the counter of authentication failures
/I and terminating the program if 3 attempts have been used
if (++count>3) return -1;

}

/I Once we're here, the user has entered the right password.
printf ("Password OK\n");
}




In popular movies, cool hackers easily penetrate heavily protected systems by guessing the required password in just
a few attempts. Can we do this in the real world?

Passwords can be common words, like "Ferrari”, "QWERTY", or names of pet hamsters, geographical locations, etc.
However, guessing the password is like looking for a needle in a haystack, and there's no guarantee of success — we
can only hope that we get lucky. And lady luck, as we all know, can't be trifled with. Is there a more reliable way to
crack this code?

Let's think. If the reference password is stored in the program, and isn't ciphered in some artful manner, it can be
found by simply looking at the binary code. Looking at all the text strings, especially those that look like a password,
we'll quickly find the required key and easily "open” the program!

The area in which we need to look can be narrowed down using the fact that, in the overwhelming majority of cases,
compilers put initialized variables in the data segment (in PE files, in the .data section). The only exception is, perhaps,
early Borland compilers, with their maniacal passion for putting text strings in the code segment—directly where
they're used. This simplifies the compiler, but creates a lot of problems. Modern operating systems, as opposed to our
old friend MS-DOS, prohibit modifying the code segment. Therefore, all variables allocated in it are read-only. Apart
from this, on processors with a separate caching system (Pentiums, for example), these string "litter" the code cache,
loaded during read ahead and, when they're called for the first time, loaded again from the slow RAM (L2 cache) into
the data cache. The result is slower operation and a drop in performance.

So, let's assume it's in the data section. Now, we just need a handy instrument to view the binary file. You can press
<F3> in your favorite shell (FAR, DOS Navigator) and, by pressing the <Page Down> key admire the digits scrolling
down until it bores you. You can also use a hex-editor (QVIEW, HIEW, etc.) but, in this book, for presentation
purposes, I'll use the DUMPBIN utility supplied with Microsoft Visual Studio.

Let's print out the data section (the key is /SECTION:.data) as raw data (the key is /RAWDATA:BYTES), having specified
the ">" character for redirecting the output to a file. (The response occupies a lot of space, and only its "tail* would find
room on the screen.)

> dumpbin /RAWDATA:BYTES /SECTION:.data simple.exe >filename

RAW DATA #3

00406000: 00 00 00 00 00 00 00 00 00 00 00 00 3B 114000 ............ . @.

00406010: 64 40 40 00 00 00 00 00 00 00 00 00 70 11 40 00 d@@......... pP.@.
00406020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO ........cennuee

00406030: 45 6E 74 65 72 20 70 61 73 73 77 6F 72 64 3A 00 Enter password:.
00406040: 6D 79 47 4F 4F 44 70 61 73 73 77 6F 72 64 0A 00 myGOODpassword..
00406050: 57 72 6F 6E 67 20 70 61 73 73 77 6F 72 64 OA 00 Wrong password..
00406060: 50 61 73 73 77 6F 72 64 20 4F 4B OA 00 00 00 00 Password OK.....
00406070: 40 6E 40 00 00 00 00 00 40 6E 40 00 01 01 00 00 @n@.....@NA.....

Look! In the middle of the other stuff, there's a string that is similar to a reference password (it's printed in bold). Shall
we try it? It seems likely we need not even bother: Judging from the source code, it really is the password. The
compiler has selected too prominent of a place in which to store it—it wouldn't be such a bad idea to hide the
reference password better.

One of the ways to do this is to manually place the reference password value in a section that we choose ourselves.
The ability to define the location isn't standard, and, consequently, each compiler (strictly speaking, not actually the
compiler, but the linker—but that isn't really important) is free to implement it in any way (or not implement it at all). In
Microsoft Visual C++, a special pragma — data_seg — is used for this, and indicates in which section the initialized
variables following it should be placed. By default, unassigned variables are placed in the .bbs section, and are
controlled by the bss_seg pragma.

Let's add the following lines to , and see how they run.

int count=0;

/I From now on, all the initialized variables will be
/I located in the .kpnc section.

#pragma data_seg (."kpnc")



/I Note that the period before the name

// isn't mandatory, just customary.

char passwd[ ][=PASSWORD;

#pragma data_seg ()

/I Now all the initialized variables will again

/I be located in the section by default (i.e., ."data").
char buff [PASSWORD_SIZE]="";

if (strcmp(&buff[0] , &passwd[0]))
> dumpbin /RAWDATA:BYTES /SECTION: .data simple2.exe >filename

RAW DATA #3
00406000: 00 00 00 00 00 00 00 00 00 00 00 00 45 11 40 00
00406010: 04 41 40 00 00 00 00 00 00 00 00 00 40 12 40 00 .A@......... @.@.
00406020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 QO ................
00406030: 45 6E 74 65 72 20 70 61 73 73 77 6F 72 64 3A 00 Enter password:.
00406040: 57 72 6F 6E 67 20 70 61 73 73 77 6F 72 64 0A 00 Wrong password..
00406050: 50 61 73 73 77 6F 72 64 20 4F 4B OA 00 00 00 00 Password OK.....
00406060: 20 6E 40 00 00 00 00 00 20 6E 40 00 01 01 00 00 N@..... N@......
00406070: 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 QO ..........c.....

Aha! Now, there's no password in the data section and hackers' attack has been retarded. But don't jump to
conclusions. Simply display the list of sections in the file:

> dumpbin simple2.exe

Summary
2000 .data

1000 .kpnc
1000 .rdata
4000 .texts

The nonstandard section .kpnc attracts our attention right away. Well, shall we check to see what's in it?

dumpbin /SECTION:.kpnc /RAWDATA simple2.exe

RAW DATA #4
00408000: 6D 79 47 4F 4F 44 70 61 73 73 77 6F 72 64 0A 00 myGOODpassword..

There's the password! And we thought we hid it. It's certainly possible to put confidential data into a section of
noninitialized data (.bss), the service RTL section (.rdata), or even into the code section (.text) — not everyone will look
there for the password, and such allocation won't disturb the functioning of the program. But you shouldn't forget about
the possibility of an automated search for text strings in a binary file. Wherever the reference password may be, such
a filter will easily find it. (The only problem is determining which text string holds the required key; most likely, a dozen
or so possible "candidates” will need to be tried.)

If the password is written in Unicode, the search is somewhat more complicated, since not all such utilities support this
encoding. But it'd be rather native to hope that this obstacle will stop a hacker for long.




Step Two: Getting Acquainted with the Disassembler

In the previous step, we found the password. But how tiresome it is to enter the password each time you start the
program! It wouldn't be a bad idea to hack the program so that no password is requested, or so that any password is
accepted.

Hack?! It's not difficult. It's tougher to know what to hack with. A huge variety of hacker tools exists: disassemblers,
debuggers, spyware such as APl and message loggers, file (port, registry) call monitors, decompressors, and so on.
How can a novice code digger grasp all of these facilities?

Spies, monitors, and decompressors are auxiliary, "Plan B" utilities. The main hacker weapons are the disassembler
and the debugger.

The purpose of a disassembler is clear from its name. Whereas assembling is the translation of assembly instructions
into machine code, disassembling is the translation of machine code into assembly instructions.

However, a disassembler can be used to study more than programs written in the assembiler. Its range of application
is wide, but not boundless. You may wonder where that boundary lies.

All implementations of programming languages can be divided roughly into the following categories:

B |nterpreters execute a program in the order it was typed by the programmer. In other words,
interpreters "chew up" the source code, which can be accessed directly, without using additional
resources. To start most BASIC and Perl implementations, you need an interpreter in addition to the
source code of the program. This is inconvenient both for users (who, to execute a program of 10 KB,
need to install an interpreter of 10 MB) and for developers (who likely don't want to give everyone the
entire source code of the program). In addition, syntactic parsing takes a lot of time, which means no
interpreter can claim great performance.

B Compilers behave differently. They "grind" the program into machine code that can be executed
directly by the processor, without using the source code or an accessory program such as an
interpreter. From a user's point of view, a compiled program is a mash of hexadecimal bytes
impossible for nonexperts to understand. This facilitates the development of protection mechanisms:
You can only crack the simplest algorithms without deciphering them.

Is it possible to obtain the source code of a program from its machine code? No! Compilation is a
unidirectional process. Labels and comments aren't included. (However, we can get the gist of the
source code without comments—we are hackers, aren't we?) The main stumbling block is the
ambiguous correspondence of machine instructions to constructions in high-level languages.
Moreover, assembling also is a unidirectional process, and automatic disassembling is impossible in
principle. However, we will not cram such details into the heads of novice code diggers; we'll leave
this problem for later consideration.

B Several software development systems lie between compilers and interpreters. The source code is
transformed not to machine code, but rather to code in another interpreted language. To execute this
code, the "compiled" file needs its own interpreter. FoxPro, Clipper, numerous dialects of BASIC, and
certain other languages are examples.

In this last category, program code is still executed via an interpreter, but all extraneous information — labels, variable
names, comments — is removed, and meaningful operator names are replaced with digital codes. This "stone" kills
two birds: The intermediate language is tweaked for fast interpretation and is optimized for size beforehand, and the
program code becomes unavailable for direct investigation (and/or modification).

Disassembling such programs is impossible — disassemblers only work with machine code, and can't "digest" code in
an interpreted language (also known as Tt code) that they don't understand. The processor can't digest Ttcode either. It
can only be executed with an interpreter. But the interpreter is just what the disassembler can digest! By investigating



how it works, you can "understand" Ttcode and the purpose of its instructions. It's a laborious process! Interpreters can
be so complex, and can occupy so many megabytes, that their analysis can take several months or years.
Fortunately, there's no need to analyze each program. Many interpreters are identical, and Ttcode does not tend to
vary significantly from one version to another — at least, the main parts don't change daily. Therefore, it's possible to
create a program to translate Ttcode back to source code. It's not possible to restore names of variables; nevertheless,
the listing will be readable.

So, disassemblers are used to investigate compiled programs, and can be applied when analyzing "pseudo-compiled”
code. If that's the case, they should be suitable for cracking simple.exe. The only question is which disassembler to
use.

Not all disassemblers are identical. There are "intellectuals” that automatically recognize constructions (i.e., prologs
and epilogs of functions, local variables, cross-references, etc.). There are also "simpletons” that merely translate
machine code into assembly instructions.

Intellectual disassemblers are the most helpful, but don't hurry to these: Begin with a manual analysis. Disassembler
tools are not always on hand; therefore, it wouldn't be a bad idea to master working "in field conditions" first. Besides,
working with a poor disassembler will emphasize "the taste" of good things.

Let's use the familiar DUMPBIN utility — a true "Swiss Army knife" that has plenty of useful functions, including a
disassembler. Let's disassemble the code section (bearing the name .text). Redirect the output to a file, since we
certainly won't find room for it on the screen.

> dumpbin /SECTION: .text /DISASM simple.exe >.code

In less than a second, the .code file is created. It has a size of as much as 300 KB. But the source program was shorter
by hundreds of times! How much time will it take to clear up this "Greek?" The overwhelming bulk of it has no relation
to the protection mechanism; it represents the compiler's standard library functions, which are of no use to us. How
can we distinguish these from the "useful" code?

Let's think a bit. We don't know where the procedure to match passwords is located, and we don't know how it works.
But we can assert with confidence that one of its arguments is a pointer to the reference password. We just need to
find where this password is located in memory. Its address will be stored by the pointer.

Let's have a look at the data section once again (or wherever the password is stored).

> dumpbin /SECTION: .data /RAWDATA simple.exe >.data

RAW DATA #3
00406000: 00 00 00 00 00 00 00 00 00 00 00 00 7B 114000 ..{.@.
00406010: 6E 40 40 00 00 00 00 00 00 00 00 00 20 12 40 00 N@@... .@.
00406020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ...
00406030: 45 6E 74 65 72 20 70 61 73 73 77 6F 72 64 3A 00 Enter password: .
00406040: 6D 79 47 4F 4F 44 70 61 73 73 77 6F 72 64 0A 00 myGOODpassword..
00406050: 57 72 6F 6E 67 20 70 61 73 73 77 6F 72 64 0A 00 Wrong password..
00406060: 50 61 73 73 77 6F 72 64 20 4F 4B OA 00 00 00 00 Password OK...

Aha! The password is located at the offset 0x406040 (the left column of numbers), so the pointer to it also must equal
0x406040. Let's try to find this number in the disassembled listing by searching with any text editor.

Have you found it? Here it is (printed in bold in the text):

00401045: 68 40 60 40 00 push 406040h
0040104A: 8D 55 98 lea edx, [ebp-68h]
0040104D: 52 push edx

0040104E: E8 4D 00 00 00 call 004010A0
00401053: 83 C4 08 add esp, 8
00401056: 85 CO test eax, eax
00401058: 74 OF je 00401069

This is one of two arguments of the 0x04010A0 function placed on the stack by the push machine instruction. The
second argument is a pointer to a local buffer, probably containing the user-entered password.



Here, we have to deviate from our subject to consider passing parameters in detail. The following ways of passing
function arguments are the most common: via registers and via the stack.

Passing parameters via registers is the fastest way, but it's not free from disadvantages: The number of registers is
very limited, and it complicates implementing recursion — calling a function from within its own body. Furthermore,
before writing new arguments into registers, we need to save the old values in RAM. In this case, isn't it easier to pass
arguments through RAM without being tormented by registers?

Most compilers pass arguments via the stack. Compilers have standard way of passing arguments. There are at least
two different mechanisms:

B The C convention pushes arguments onto the stack from right to left (i.e., the first argument of the
function is placed on the stack last, and thus appears on top). Deleting arguments from the stack is
entrusted not to the function, but to the code calling the function. This is wasteful because each
function call makes the program heavier by several bytes. However, it allows us to create functions
with a variable number of arguments because the calling code knows the exact number of arguments
passed.

The stack usually is cleared by the instruction ADD ESP, xxx, where xxx is the number of bytes to be

deleted. Since, in 32-bit mode, each argument as a rule occupies 4 bytes, the number of function
- B

arguments is calculated in this way: i q Optimizing compilers can be more

eloquent. To clear a stack of several arguments, they often pop them into unused registers with the

POP instruction. Alternatively, an optimizing compiler clears at the time it deems most convenient,

rather than immediately after exiting a function.

B The Pascal convention pushes arguments on the stack from left to right (i.e., the first argument of the
function is placed on the stack first, and thus appears on the bottom). The deletion of function
arguments is entrusted to the function itself, and is usually performed by the RET xxx instruction (i.e.,
return from the subroutine and pop xxx bytes from the stack).

The value returned by the function is passed through the EAX register (or EDX:EAX when returning 64-bit variables) in
both conventions.

Since our program was written in C, and pushes arguments from right to left, its source code may look like this:

(*0x4010A0) (ebp-68, "myGOODpassword")

We can be convinced that there are two arguments, not six or ten, by looking at the ADD ESP, 8 instruction that
immediately follows the CALL:

0040104E: E8 4D 00 00 00 call 004010A0

00401053: 83 C4 08 add esp, 8

Now, we only need to understand the goal of the 0x4010A0 function — although, if we used our brains, we'd see this is
unnecessary! It's clear that this function checks the password; otherwise, why would the password be passed to it?
How the function does this is a question of minor importance. What we're really interested in is the return value of the
function. So, let's proceed to the following line:

00401056: 85 CO test eax, eax

00401058: 74 OF  je 00401069

What do we see? The TEST EAX, EAX instruction checks if value returned by the function equals zero. If it does, the JE
instruction following it jumps to line 0x401096. Otherwise (i.e., if EAX !=0):

0040105A: 68 50 60 40 00 push 406050h

It seems to be a pointer, doesn't it? Let's verify that assumption by looking at the data segment:

00406050: 57 72 6F 6E 67 20 70 61 73 73 77 6F 72 64 0A 00 Wrong password..

We are almost there. The pointer has led us to the "Wrong password" string, which the next function outputs to the
screen. Therefore, a nonzero EAX value indicates a wrong password, and a zero value indicates a correct one.

OK, let's look at the branch of the program that handles a valid password.



0040105F: E8 DO 01 00 00 call 00401234
00401064: 83 C4 04 add esp, 4
00401067: EB 02 jmp 0040106B
00401069: EB 16 jmp 00401081

00401081: 68 60 60 40 00 push 406060h
00401086: E8 A9 01 00 00 call 00401234

Well, we see one more pointer. The 0x401234 function was already encountered; it's (presumably) used for string
output. We can find the strings in the data segment. This time, "Password OK" is referenced.

The following are some working suggestions: If we replace the JE instruction with INE, the program will reject the real
password as incorrect, and all incorrect passwords will be accepted. If we replace TEST EAX, EAX with XOR EAX, EAX,
upon executing this instruction, the EAX register will always contain zero, no matter what password is entered.

Just a trifle remains: to find these bytes in the executable file and correct them.




Step Three: Surgery

Direct modification of an executable file is a serious task. We are restricted by the existing code in that we can't move
instructions apart or "push” them together, having thrown away "superfluous parts" of the protection. The offsets of all
other instructions would shift, while the values of pointers and jump addresses would remain the same, and thus
would point to the wrong spot.

It's rather simple to cope with the elimination of "spare parts." Just stuff the code with NOP instructions (whose opcode
is 0x90, not 0x0, as many novice code diggers seem to think), that is, with an empty operation (since, generally, NOP is
simply another form of the XCHG EAX, EAX instruction). Things are much more complicated when we move
instructions apart! Fortunately, in PE files, "holes" always remain after alignment, which we can fill with our code or
data.

But isn't it easier to simply compile the assembled file after we make the required changes? No, it isn't: If an assembler
can't recognize pointers passed to a function (as we saw, our disassembler can't distinguish them from constants), it
can't correct them properly, and the program won't run.

Therefore, we have to "dissect” the "live" program. The easiest way to do this is to use the HIEW utility that "digests"
PE files, and thus simplifies the search for the necessary fragment. Launch it with the executable file name in the
command line (hiew simple.exe). Then, press the <Enter> key two times, switch to assembler mode, and press the
<F5> key to proceed to the required address. As you may recall, the TEST instruction that checks the
string-comparison result returned by the function is located at 0x401056.

0040104E: E8 4D 00 00 00 call 004010A0
00401053: 83 C4 08 add esp, 8
00401056: 85 CO test eax, eax
00401058: 74 OF je 00401069

So that HIEW is able to distinguish the address from the offset in the file itself, precede this address with a dot:
401056.

00401056: 85C0 test eax, eax
00401058: 740F je 00401069 ---(1)

Now, press the <F3> key to switch HIEW to edit mode. Place the cursor at the TEST EAX, EAX instruction, press the
<Enter> key, and replace it with XOR EAX, EAX.

00001056: 33C0 xor eax, eax
00001058: 740F e 00401069

Because the new instruction fits exactly in the place of the previous one, press the <F9> key to save the changes to
disk, and quit HIEW. Start the program and enter the first password that comes to mind.

> simple.exe
Enter password:Hi, blockhead!
Password OK

The protection has fallen! But what would we do if HIEW did not know how to "digest" PE files? We'd have to use a
context search. Look at the hex dump that the disassembler displays to the left of the assembly instructions. If you try
to find the 85 CO sequence — the TEST EAX, EAX instruction — you won't come up with anything useful: There can be
hundreds or more of these TEST instructions in a program. The ADD ESP,8\TEST EAX, EAX combination also is
common, since it represents many typical constructions in C: if (! func (argl,arg2))..., if (! func (argl,arg2))..., while
(func(argl,arg2), etc. The jump address likely will be different at various branches in the program; therefore, the ADD
ESP,8/TEST EAX,EAX/JE 00401069 substring has a good chance of being unique. Let's try to find the code that
corresponds to it: 83 C4 08 85 C0O 74 OF. (To do this, just press the <F7> key in HIEW.)

Yippee! Only one entry is found, and that's just what we need. Now, let's try to modify the file directly in hex mode,
without using the assembler. Note that inverting the lower bit of the instruction code results in inverting the condition



for branching (i.e., 74 JE — 75 JNE).

It works, doesn't it? (Has the protection gone mad? It doesn't recognize valid passwords, but it welcomes all others.)
It's wonderful!

Now, we need to clear up which bytes have changed. For this, we need an original copy of the file we modified (which
we prudently saved before editing), and any file "comparer." Today, the most popular ones are c2u by Professor
Nimnull and MakeCrk from Doctor Stein's Labs. The first is the better of the two; it more precisely meets the most
popular "standard", and it knows how to generate the extended XCK format. At worst, we can use the utility that
comes with MS-DOS/Windows — fc.exe (an abbreviation of File Compare).

Start your favorite comparer, and look at the differences between the original and modified executables.

> fc simple.exe simple.ex_ > simple.dif
! ! t differences file
hacked file

original file

> type simple.dif
Comparing files simple,exe and SIMPLE.EX
00QO1058: T4 75

The left column shows the offset of a byte from the beginning of the file, the second column shows the contents of the
byte in the original file, and the third column contains the byte's value after modification. Let's compare that to the
report generated by the c2u utility.

> c2u simple.exe simple.ex_

Corrections are written to the *.crx file, where "*" is the name of the original file. Let's consider the result more closely.

>type simple.crx
[BeginXCK]
? Description :$) 1996 by Professor Nimnul

? Crack subject :

? Used packer : None/UnKnOwN/WWPACK/PKLITE/AINEXE/DIET/EXEPACK/PRO-PACK/LZEXE
? Used unpacker : None/UNP/X-TRACT/INTRUDER/AUTOHack/CUP/TRON

? Comments

? Target OS DOS/V\_/iN_/\{V_N_'I'_ANQ_S_/OS_$_UNX

? Protection :_ ----- L] %17

? Type of hack : Bit hack/JMP Correction

? Language : UnKnOwN/Turbo/Borland/Quick/MS/Visual C/C++/Pascal/Assembler
? Size : 28672

? Price : $000

? Used tools :TD386 v3.2, HIEW 5.13, C2U/486 v0.10

? Time for hack : 00:00:00

? Crack made at : 21-07-2001 12:34:21

? Under Music :iRON MAIDEN
[BeginCRA]
Difference(s) between simple.exe & simple.ex_
SIMPLE.EXE

00001058: 74 75

[EndCRA]
[EndXCK]

The result is the same; there simply is an additional text-file header explaining what kind of a beast this is. The
collection of fields differs from one hacker to another. If you want, you can add your own fields or delete someone
else's. However, | don't recommend doing that without a good reason. Besides, it's better to adhere to one template.



Let's use the one just shown.
Description is simply an explanation. In our case, this may look like this: "Test cracking No.1."
Crack subject is what we've just cracked. Let's write: "Password protection of simple.exe."

Used packer is the type of packer. In the days of good old MS-DOS, packers were widely used to automatically
decompress executable files into memory when they were launched. Thus, disk space was economized (recall the
ridiculously small hard disks at the end of the 1980s and the beginning of the 1990s), while protection was
strengthened. A packed file cannot be directly investigated nor edited. Before you do anything with the file, you have to
unpack it. Both the hacker and users of the CRK file have to do the same. Since our file wasn't packed, we'll leave this
field empty or write "None" in it.

Used unpacker is the recommended unpacker. Not all unpackers are identical; many packers provide advanced
protection and skillfully resist attempts to remove it. Therefore, unpackers are not simple things. An "intelligent"
unpacker easily deals with "tough" packers, but it often has difficulty with simple protection, or vice versa. If an
unpacker isn't required, leave this field blank or write "None."

Comments is used to list additional tasks the user should perform before cracking (for example, removing the "system"
attribute from the file, or, conversely, setting it). However, additional operations are only required in extreme cases;
therefore, this field is usually filled with boasts. (Sometimes you'll even find obscenities concerning the mental abilities
of the protection developer.)

Target OS is the operating system for which the cracked product is intended, and in which the hacker tested it. The
program won't necessarily run under all of the same systems after cracking. For example, Windows 9x always ignores
the checksum field, but Windows NT doesn't; therefore, if you haven't corrected it, you won't be able to run the cracked
program using Windows NT. In our case, the checksum of the PE file header is equal to zero. (This depends on the
compiler.) This means the file integrity isn't checked, and the hack will work in Windows NT/9x.

Protection is a "respectability level" evaluated as a percentage. Generally, 100% corresponds to the upper limit of the
mental abilities of a hacker, but who would ever admit that? It's not surprising that the "respectability level" is usually
underestimated, occasionally ten times or more. ("Look everybody! What a cool hacker | am; cracking whatever | like
is as easy as A-B-C!")

Type of hack is more useful for other hackers than for users who don't understand protection and hack types. There's
no universal classification. The most commonly used term, bit-hack, means cracking by changing one or more bits in
one or more bytes. A particular case of a bit-hack is the JMP correction — changing the address or condition of a jump
(as we've just done). Another term, NOP-ing, refers to a bit-hack that replaces certain instructions with the NOP
instruction, or inserts insignificant instructions. For example, to erase a two-byte JZ xxx instruction, a combination of
two one-byte INC EAX/DEC EAX instructions can be used.

Language or, to be more accurate, the compiler, is the programming environment in which the program was written. In
our case, it was Microsoft Visual C++. (We know this because we compiled the program.) How do we know the
environment of someone else's program? The first thing that comes to mind is to look in the file for copyrights: They
are left by many compilers, including Visual C++. Look for "000053d9:Microsoft Visual C++ Runtime Library." If
compilers aren't specified, run the file through IDA. It automatically recognizes most standard libraries, and even
indicates particular versions. As a last resort, try to determine the language in which the code was written, taking into
account C and Pascal conventions and familiar compiler features. (Each compiler has its own "handwriting." An
experienced hacker can figure out how a program was compiled and even discover the optimization key.

Size refers to the size of the cracked program, which is useful for controlling the version. (Different versions of the
program often differ in size.) It is determined automatically by the c2u utility; you don't need to specify it manually.

Price refers to the price of a licensed copy of the program. (The user should know how much money the crack has
saved him or her.)

Used tools are the instruments used. Not filling in this field is considered bad form — it's interesting to know what
instruments were used to hack the program.

This is especially true for users who believe that if they get a hold of these DUMPBIN and HIEW thingies, the
protection will fall by itself.



Time for hack is the time spent hacking, including breaks for having a smoke and getting a drink. What percentage of
people fills in this field accurately, without trying to look "cool?" It can be given little credence.

Crack made at is the timestamp for the completion of the crack. It's generated automatically, and you don't need to
correct it (unless you get up with the sun, want to pretend you are a night owl, and set the time of completion to 3
a.m.).

Under Music is the music that you were listening to when hacking. (It's a pity that there's no field for the name of your
pet hamster.) Were you listening to music while hacking? If you were, write it down — let everyone know your
inspiration.

Now, we should have the following:
[BeginXCK]
? Description : Test cracking No. 1

? Crack subject : Password protection of simple.exe

? Used packer :None

? Used unpacker : None

? Comments : Hello, sailor! Been at sea a bit too long?
? Target OS  : WNT/W95

? Protection :ﬂ ERRRE: i 1 %1

? Type of hack : JMP Correction

? Language : Visual C/C++

? Size : 28672

? Price : $000

? Used tools : DUMPBIN, HIEW 6.05, C2U/486 v0.10 & Brain
? Time for hack : 00:10:00

? Crack made at : 21-07-2001 12:34:21

? Under Music : Paul Mauriat L'Ete Indien "Africa”
[BeginCRA]
Difference(s) between simple.exe & simple.ex_
SIMPLE.EXE

00001058: 74 75

[EndCRA]
[EndXCK]

To change the same bytes in the original program, we need another utility to do what the CRK (XCRK) file specifies.
There are a lot of such utilities nowadays, which adversely affects their compatibility with various CRK formats. The
most popular are cra386 by Professor Nimnull and pcracker by Doctor Stein's Labs.

Of the products for Windows, Patch Maker has an advanced user interface (@). It includes a file comparer, crk
editor, hex editor (for manual corrections?), and crk compiler to generate executable files and save users the trouble of
figuring out the crack and how to do it.
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Figure 2: The Patch Maker at work

Some users may find such an interface convenient, but most hackers can't stand the mouse; they prefer console

applications and the keyboard.
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Step Four: Getting Acquainted with the Debugger

Overview

Debugging was initially the step-by-step execution of code, which is also called tracing. Today, programs have
become so inflated that tracing them is senseless — you'll sink into a whirlpool of nested procedures, and you won't
even understand what they do. A debugger isn't the best way to understand a program; an interactive disassembler
(IDA, for example) copes better with this task.

We'll defer a detailed consideration of the debugger for a while. (See the section "Counteracting Debuggers.") For
now, we will focus on the main functions. Using debuggers efficiently is impossible without understanding the
following:

B Tracing write/read/execute addresses, also called breakpoints

B Tracing write/read calls to input/output ports (which can no longer be used for protection with modem
operating systems because they forbid applications such low-level hardware access — that is now
the prerogative of drivers, where protection is seldom implemented)

B Tracing the loading of the dynamic link library (DLL) and the calling of certain functions, including
system components (which, as we'll see later, is the main weapon of the present-day hacker)

B Tracing program/hardware interrupts (which is not particularly relevant, since protection rarely plays
with interrupts)

B Tracing messages sent to windows and context searches in memory

So far, you don't need to know how the debugger works; you only need to realize that a debugger can do all of these
things. However, it is important to know which debugger to use. Turbo Debugger, although widely known, is primitive,
and few hackers use it.

The most powerful and universal tool is Softice, now available for all Windows platforms. (Some time ago, it only
supported Windows 95, not Windows NT.) The fourth version, the latest available when | was writing this, did not work
well with my video adapter. Therefore, | had to confine myself to the earlier 3.25 version, which is more reliable.




Method 0O: Cracking the Original Password

Using the widr utility delivered with Softlce, load the file to be cracked by specifying its name on the command line, for
example, as follows:

> wldr simple.exe

Yes, wldr is a 16-bit loader, and NuMega recommends that you use its 32-bit version, loader32, developed for
Windows NT/9x. They have a point, but loader32 often malfunctions. (In particular, it does not always stop at the first
line of the program.) However, widr works with 32-bit applications, and the only disadvantage is that it doesn't support
long file names.

If the debugger is configured correctly, a black textbox appears — a surprise to beginners. Command.com in the era of
graphical interfaces! Why not? It's faster to type a command than to search for it in a long chain of nested submenus,
trying to recollect where you saw it last. Besides, language is the natural means to express thoughts; a menu is best
suited for listing dishes at a cafe. As an example, try to print the list of files in a directory using Windows Explorer.
Have you succeeded? In MS-DOS, it was simple: dir > PRN.

If you only see INVALID in the text box (this will probably be the case), don't get confused: Windows simply hasn't yet
allocated the executable file in memory. You just need to press the <F10> key (an analog of the P command that
traces without entering, or stepping over, the function) or the <F8> key (an analog of the T command that traces and
enters, or steps into, the function). Everything will fall into place.

001B:00401277 INVALID

001B:00401279 INVALID

001B:0040127B INVALID

001B:0040127D INVALID

P

001b:00401285 push ebx

001b:00401286 push esi

001b:00401287 push edi

001b:00401288 mov  [ebp-18], esp
001B:0040128B call [KERNEL32!GetVersion]
001b:00401291 xor  edx, edx

001b:00401293 mov  dI, ah

001b:00401295 mov  [0040692c], edx

Pay attention: Unlike the DUMPBIN disassembler, Softice recognizes system function names, thus significantly
simplifying analysis. However, there's no need to analyze the entire program. Let's quickly try to find the protection
mechanism and, without going into detail, chop it off altogether. This is easy to say—and even easier to do! Just recall
where the reference password is located in memory. Umm... Is your memory failing? Can you remember the exact
address? We'll have to find it!

We'll ask the map32 command for help. It displays the memory map of a selected module. (Our module has the name
"simple," the name of the executable file without its extension.)

:map32 simple

Owner ObjName Obj# Address Size Type

simple .text 0001 001B:00401000 00003F66 CODE RO

simple .rdata 0002 0023:00405000 O0O000081E IDATA RO

simple .data 0003 0023:00406000 00001E44 IDATARW

Here is the address of the beginning of the .data section. (Hopefully you remember that the password is in the .data
section.) Now, create the data window using the we command. Then, issue the d 23:406000 command, and press the
<ALT>+<D> key combination to get to the desired window. Scroll using the <! > key, or put a brick on the <Page
Down> key. We won't need to search long.

0023:00406040 6D 79 47 4F 4F 44 70 61-73 73 77 6F 72 64 0A 00 myGOODpassword...



0023:00406050 57 72 6F 6E 67 20 70 61-73 73 77 6F 72 64 0A 00 Wrong password..
0023:00406060 50 61 73 73 77 6F 72 64-20 4F 4B 0A 00 00 00 00 Password OK.....

0023:00406070 47 6E 40 00 00 00 00 00-40 6E 40 00 01 01 00 00 Gn@.....@n@.....

0023:00406080 00 00 00 00 00 00 00 00-00 10 00 00 00 00 00 00
0023:00406090 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00
0023:004060A0 01 00 00 00 00 00 00 00-00 00 00 00 00 00 00 OO .......c...ee
0023:004060B0 00 00 00 00 00 00 00 00-00 00 00 00 02 00 00 00 ....

We've got it! Remember that to be checked, the user-entered password needs to be compared to the model value. By
setting a breakpoint at the instruction for reading address 0x406040, we will catch the comparison "by its tail." No
sooner said than done.

:bpm 406040

Now, press the <CtrI>+<D> key combination (or issue the x command) to exit the debugger. Enter any password that
comes to mind — KPNC++, for example. The debugger pops up immediately:

001B:004010B0 mov eax, [edx]
001B:004010B2 cmp al, [ecx]
001B:004010B4 jnz 004010E4 (JUMP 1)
001B:004010B6 or  al, al
001B:004010B8 jz 004010EOQ
001B:004010BA cmp ah, [ECX+01]
001B:004010BD jnz  004010E4
001B:004010BF or ah, ah
Break due to BPMB #0023:00406040 RW DR3 (ET=752.27 milliseconds)
MSR LastBranchFromlp=0040104E
MSR LastBranchTolp=004010A0

Because of certain architectural features of Intel processors, the break is activated after the instruction has been
executed (i.e., CS:EIP points to the following executable instruction — to JNZ 004010E4, in our case). Therefore, the
memory location with our breakpoint was addressed by the CMP AL, [ECX] instruction. What is in AL? Let's look at the
line above: MOV EAX, [EDX]. We can assume that ECX contains a pointer to the string with the reference password
(because it caused the break in execution). This means EDX must be a pointer to the password entered by the user.
Let's verify our assumption.

:d edx

0023:00406040 6D 79 47 4F 4F 44 70 61-73 73 77 6F 72 64 0A 00 myGOODpassword..

:d edx

0023:0012FF18 4B 50 4E 43 2B 2B OA 00-00 00 00 00 00 00 00 00 KPNC++..........

We were right. Now, the only question is how to crack this. We might replace JNZ with JZ, or more elegantly replace
EDX with ECX — then the reference password will be compared to itself! Wait a minute... We shouldn't hurry. What if
we aren't in the protection routine, but in the library function (actually, in stremp)? Changing it will result in the program
perceiving any strings as identical, not just the reference and entered passwords. It won't hurt our example, in which
strcmp was only called once, but it would cause normal, fully functional applications to fail. What can be done?

Let's exit stremp and change the IF that determines whether or not the password is right. For this purpose, P RET is
used (to trace until the RET instruction occurs — returning from the function).

‘P RET

001B:0040104E call 004010A0
001B:00401053 add esp, 08
001B:00401056 test eax, eax
001B:00401058 jz 00401069
001B:0040105A push 00406050
001B:0040105F call 00401234
001B:00401064 add  esp, 04
001B:00401067 jmp  0040106B

This is familiar. We were previously here with the disassembler. We can take the same steps now: Replace the TEST
instruction with XOR, or write the sequence of bytes that identifies... Just a moment. Where are our bytes, the
hexadecimal instructions? Softilce doesn't display them by default, but the CODE ON command forces it to do so.



code on
001B:0040104E E84D000000 call 004010A0

001B:00401053 83C408 add esp, 08
001B:00401056 85C0O test eax, eax
001B:00401058 740F jz 00401069

001B:0040105A 6850604000 push 00406050
001B:0040105F E8D0010000 call 00401234
001B:00401064 83C404 add esp, 04
001B:00401067 EB02 jmp  0040106B

That's better. But how can we be sure that these bytes will be in the executable file at the same addresses? The
question isn't as silly as it may seem. Try to crack the example crackme0x03 using the method just given. At first, it
seems similar to simple.exe—even the reference password is located at the same address. Let's set a breakpoint on
it, wait for the debugger to pop up, exit the comparing procedure, and look at the code identical to the one we
previously came across.

001B:0042104E E87D000000 call  004210D0

001B:00421053 83C408 add esp, 08
001B:00421056 85C0O test eax, eax
001B:00421058 740F jz 00421069

Start HIEW, jump to address 0x421053, and... Oops; HIEW is upset with us. It says there's no such address in the file!
The last byte ends at 0x407FFF. How can we be at 0x421053 in the debugger but not in the file? Perhaps we're in the
body of a Windows system function. But Windows system functions are located much higher — beginning at
0x80000000.

The PE file could be loaded at a different address than the one for which it was created. (This property is called
relocatability.) The system automatically corrects references to absolute addresses, replacing them with new values.
As a result, the file image in memory doesn't correspond to the one written on disk. How can we find the place that
needs to be corrected now?

This task is partly facilitated by the system loader, which only can relocate DLLs and always tries to load executable
files at their "native" addresses. If this is impossible, loading is interrupted and an error message is sent. Likely, we are
dealing with a DLL loaded by the protection we are investigating. Why are DLLs here, and where did they come from?

We'll have to study to find out.

Listing 4.2: The Source Code of crackme0x03

#include <stdio.h>
#include <windows.h>

__declspec(dllexport) void Demo()

{
#define PASSWORD_SIZE 100

#define PASSWORD  "myGOODpassword\n"

int count=0;
char buff [PASSWORD_SIZE]="";

for(;;)

{

printf("Enter password:");

fgets(&buff[0], PASSWORD_SIZE-1, stdin);

if (strcmp(&buff[0], PASSWORD))
printf("Wrong password\n");
else break;

if (++count>2) return -1;

}
printf("Password OK\n");






001B:00421058 740F jz 00421069
:File image in memory

.0040104E: E87D000000 call .0004010DQ -------- 1)
.00401053: 83C408 add esp, 008 ;"?"
.00401056: 85C0 test eax, eax

.00401058: 740F je  .000401069 -------- 2

:File image on disk

The same machine code — E8 7D 00 00 00 — corresponds to the CALL 0x4210D0 and CALL 0x4010D0 instructions.
How can this be? Here's how: The operand of the OxE8 processor instruction does not represent the offset of a
subroutine; it represents the difference between the offsets of the subroutine and the instruction next to the CALL
instruction. Therefore, in the first case, 0x421053 (the offset of the instruction next to CALL) + 0x0000007D (don't forget
about the reverse byte order in double words) = 0x4210D0 — the required address. Thus, when the load address is
changed, we don't need to correct the CALL instruction.

In the crackOx03 example, the following line is also in another location (which can be found using HIEW):

004012C5: 89154C694000 mov  [00040694C], edx

The MOV instruction uses absolute addressing, rather than indirect. What will happen if you change the load address
of the module? Will the file image on disk and that in memory be identical in this case?

Looking at the address 0x4212C5 (0x4012C5 + 0x2000) using the debugger, we see that the call does not go to
0x42694C, but to 0x40694C! Our module intrudes in another's domain, modifying it as it likes. This can quickly lead to a
system crash! In this case, it doesn't crash, but only because the line being accessed is located in the Startup
procedure (in start code), has already been executed (when the application started), and isn't called from the loaded
module. It would be another matter altogether if the Demo () function accessed a static variable; the compiler, having
substituted its offset, would make the module unrelocatable! It's hard to imagine how DLLs, whose load address isn't
known beforehand, manage to work. But there are at least two solutions.

The first is to use indirect addressing instead of direct (for example, [reg+offset_val], where reg is a register containing
the base load address, and offset_val is the offset of the memory location from the beginning of the module). This will
allow the module to be loaded at any address, but the loss of just one register will appreciably lower the program's
performance.

The second is to instruct the loader to correct direct offsets according to a selected base load address. This will slightly
slow loading, but it won't affect the speed of the program. This doesn't mean that load time can be neglected; this
method simply is preferred by Microsoft.

The problem is distinguishing actual direct offsets from constants that have the same value. It'd be silly to decompile
a DLL just to clear up which locations we need to tweak. It's much easier to list the addresses in a special table,
bearing the name Relocation [Fix Up] table, directly in the loaded file. The linker is responsible for creating it. Each DLL
contains such a table.

To get acquainted with the table, compile and study the following listing.

Listing 4.3: The Source Code of fixupdemo.c

::fixupdemo.c
__declspec(dllexport) void meme(int x)
{
static int a=0x666;
a=x;
}

> cl fixupdemo.c /LD

Compile the code, then decompile it right away using "DUMPBIN/DISASM fixupdemo.dil" and
"DUMPBIN/SECTION:.data/RAWDATA".

10001000: 55 push ebp
10001001: 8B EC mov ebp, esp



10001003: 8B 45 08 mov eax, dword ptr [ebp+8]

10001006: A3 30 50 00 10 mov [10005030], eax

1000100B: 5D pop ebp

1000100C: C3 ret

RAW DATA #3

10005000: 00 00 00 00 00 00 00 00 00 00 00 00 3324 00 10 ............ 3%..

10005010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO ................
10005020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO ................
10005030: 66 06 00 00 64 11 00 10 FF FF FF FF 00 00 00 00 f...d...........

Judging by the code, the contents of EAX are always written to 0x10005030. Nevertheless, don't jump to conclusions!
Try "DUMPBIN/RELOCATIONS fixupdemo.dIl".

BASE RELOCATIONS #4
1000 RVA, 154 SizeOfBlock
7 HIGHLOW
1C HIGHLOW
23 HIGHLOW
32 HIGHLOW
3A HIGHLOW

The relocation table isn't empty! Its first entry points to the location 0x100001007, obtained by adding the offset 0x7 with
the RVA address 0x1000 and the base load address 0x10000000 (found using DUMPBIN). The location 0x100001007
belongs to the MOV [0x10005030], EAX instruction, and it points to the highest byte of the direct offset. This offset is
corrected by the loader while linking the DLL (if required).

Want to check? Let's create two copies of one DLL (such as fixupdemo.dll and fixupdemo2.dll) and load them one by one
using the following program:

Listing 4: The Source Code of fixupload.c

: :fixupload.c
#include <windows.h>

main ()
{
void (*demo) (int a) ;
HMODULE h;
if ( (h=LoadLibrary (“fixupdemo.dil") ) &&
(h=LoadLibrary (“fixupdemo2.dil") ) &&
(demo=(void (*) (int a) )GetProcAddress (h, "'meme") ))
demo (0x777);
}

> cl fixupload

Since we can't load two different DLLs at the same address (how will the system know it's the same DLL?), the loader
has to relocate one. Let's load the compiled program in the debugger, and set a breakpoint at the LoadLibraryA
function. This is necessary to skip the startup code and get into the main function body. (Program execution doesn't
start from the main function; instead, it starts from the auxiliary code, in which you can easily "drown.") Where did the A
character at the end of the function name come from? Its roots are closely related to the introduction of Unicode in

Windows. (Unicode encodes each character with 2 bytes. Therefore, 216 = 65,536 symbols, enough to represent
practically all of the alphabets of the world.) The LoadLibrary name may be written in any language or in many
languages simultaneously — in Russian-French-Chinese, for example. This seems tempting, but doesn't it decrease
performance? It certainly does, and substantially. There's a price to be paid for Unicode! ASCII encoding suffices in
most cases. Why waste precious processor clock ticks? To save performance, size was disregarded, and separate
functions were created for Unicode and ASCII characters. The former received the W suffix (Wide); the latter received
A (ASCII). This subtlety is hidden from programmers: Which function to call — W or A— is decided by the compiler.
However, when you work with the debugger, you should specify the function name — it cannot determine the suffix
independently. The stumbling block is that certain functions, such as ShowWwindows, have no suffixes; their library



names are the same as the canonical one. How do we know?

The simplest way is to look up the import table of the file being analyzed, and find your function there. For example, in
our case:

> DUMPBIN /IMPORTS fixupload.exe > filename
> type filename

19D HeapDestroy

1C2 LoadLibraryA

CA GetCommandLineA

174 GetVersion

7D ExitProcess

29E TerminateProcess

From this fragment, you can see that LoadLibrary has the A suffix. The Exit-Process and TerminateProcess functions
have no because they don't work with strings.

The other way is to look in the SDK. You won't find library names in it, but the Quick Info subsections give brief
information on Unicode support (if such support is implemented). If Unicode is supported, the W or A suffix is indicated;
if not, there are no suffixes. Shall we check this?

Here's Quick Info on LoadLibrary:

QuickiInfo
Windows NT: Requires version 3.1 or later.
Windows: Requires Windows 95 or later.
Windows CE: Requires version 1.0 or later.
Header: Declared in winbase.h.
Import Library: Use kernel32.lib.
Unicode: Implemented as Unicode and ANSI versions on Windows NT.

We now understand the situation for Windows NT, but what about the one for the more common Windows 95/98? A
glance at the KERNEL32.DLL export table shows there is such a function. However, looking more closely, we see
something surprising: Its entry point coincides with the entry points of ten other functions!

ordinal hint RVA  name
556 1B3 00039031 LoadLibraryw

The third column in the DUMPBIN report is the RVA address — the virtual address of the beginning of the function
minus the file-loading base address. A simple search shows that it occurs more than once. Using the srcin
program-filter to obtain the list of functions, we get the following:

21: 118 100039031 AddAtomW

116: 217 6000039031 DeleteFilewW

119: 220 63 00039031 DisconnectNamedPipe
178: 279 9E 00039031 FindAtomwW

204: 305 B8 00039031 FreeEnvironmentStringsW
260: 361 FO0 00039031 GetDriveTypeW

297: 398 11500039031 GetModuleHandleW
341: 442 14100039031 GetStartuplnfow

377: 478 16500039031 GetVersionExW

384: 485 16C 00039031 GlobalAddAtomW
389: 490 171 00039031 GlobalFindAtomwW
413: 514 189 00039031 HeapLock

417: 518 18D 00039031 HeapUnlock

440: 541 1A4 00039031 IsProcessorFeaturePresent
455: 556 1B3 00039031 LoadLibraryW

508: 611 1E8 00039031 OutputDebugStringW
547: 648 20F 00039031 RemoveDirectoryW
590: 691 23A 00039031 SetComputerNameW
592: 693 23C 00039031 SetConsoleCP

597: 698 241 00039031 SetConsoleOutputCP
601: 702 24500039031 SetConsoleTitleW



605: 706 249 00039031 SetCurrentDirectoryW
645: 746 27100039031 SetThreadLocale
678: 779 292 00039031 TryEnterCriticalSection

What a surprise: All Unicode functions live under the same roof. Since it's hard to believe that LoadLibrarywW and, say,
DeleteFileW are identical, we have to assume that we are dealing with a "stub", which only returns an error. Therefore,
the LoadLibraryW function isn't implemented in Windows 9x.

However, let's get back to the subject at hand. Let's open the debugger, set a breakpoint on LoadLibraryA, then quit the
debugger and wait for it to pop up. Fortunately, we won't have to wait long.

KERNEL32!LoadLibraryA
001B:77E98023 push ebp
001B:77E98024 mov ebp, esp
001B:77E98026 push ebx
001B:77E98027 push esi
001B:77E98028 push edi
001B:77E98029 push 77E98054
001B:77E9802E push dword ptr [ebp+08]

Let's issue the P RET command to exit LoadLibraryA (we really don't need to analyze it), and return to the easily
recognizable main function.

001B:0040100B call [KERNEL32!LoadLibraryA]
001B:00401011 mov [ebp-08], eax
001B:00401014 cmp dword ptr [ebp-08], 00
001B:00401018 jz 00401051

001B:0040101A push 00405040
001B:0040101F call [KERNEL32!LoadLibraryA]
001B:00401025 mov [ebp-08], eax
001B:00401028 cmp dword ptr [ebp-08], 00

Note the value of the EAX register — the function has returned the load address to it (on my computer, 0x10000000).
Continuing to trace (using the <F10> key), wait for the second execution of LoadLibraryA. This time, the load address
has changed. (On my computer, it now equals 0x0530000.)

We are getting closer to the demo function call. (In the debugger, it looks like PUSH 00000 CALL [EBP-04]. The
EBP-04 tells us nothing, but the 0x777 argument definitely reminds us of something in ‘.) Don't forget to move
your finger from the <F10> key to the <F8> key to enter the function.

001B:00531000 55 push ebp
001B:00531001 8BEC mov ebp, esp
001B:00531003 8B4508 mov  eax, [ebp+08]

001B:00531006 A330505300 mov [00535030], eax
001B:0053100B 5D pop ebp
001B:0053100C C3 ret

That's it! The system loader corrected the address according to the base address of loading the DLL itself. This is how
it should work. However, there's one problem — neither that location, nor the sequence A3 30 50 53 00, is in the
original DLL, which we can easily see via a context search. How can we find this instruction in the original DLL?
Perhaps we'd like to replace it with NOPs.

Let's look a little bit higher — at instructions that don't contain relocatable elements: PUSH EBP/MOV EBP, ESP/MOV
EAX, [EBP+08]. Why not look for the sequence 55 8B EC xxx A3? In this case, it'll work but, if the relocatable elements
were densely packed with "normal” ones, we wouldn't find it. The short sequence would produce many false hits.

A more reliable way to find the contents of relocatable elements is to subtract the difference between the actual and
recommended load address from them: 0x535030 (the address modified by the loader) - (0x530000 (the base loading
address) - 0x10000000 (the recommended loading address)) - 0x10005030. Taking into account the reverse sequence
of bytes, the machine code of the MOV [10005030], EAX instruction should look like this: A3 30 50 00 10. If we search for
it using HIEW, miracle of miracles, there it is!




Method 1: Searching Directly for the Entered Password in Memory

Storing a password as plain text in the program's body is more of an exception than rule. Hackers are hardly needed if
the password can be seen with the naked eye. Therefore, protection developers try to hide it in every possible way.
(We'll discuss how they do this later.) Taking into account the size of modern applications, a programmer may place
the password in an unremarkable file stuffed with "dummies" — strings that look like a password, but are not. It's
unclear what is fake and what isn't, especially because in a project of average size, there may be several hundreds, or
even thousands, of suitable strings.

Let's approach the problem from the opposite side — let's not search for the original password, which is unknown to
us, but rather for the string that we've fed to the program as the password. Then, let's set a breakpoint on it, and
proceed in the same manner as before. The break will follow the watching call. We'll quit the matching procedure,
correct JMP, and...

Let's take another look at the simple.c source code that we're cracking.
for (;))
{

printf ("Enter password:") ;

fgets (&buff[0], PASSWORD_SIZE, stdin) ;

if (strcmp (&buff[0], PASSWORD) )
printf (“Wrong password\n") ;

else break;

if (++count>2) return -1;

}

Notice that the user-supplied password is read into buff, and compared to the reference password. If no match is
made, the password again is requested from the user — but buff isn't cleared before the next attempt. From this, we
can see that, if, upon receiving the message Wrong password, we open the debugger and walk through it with a context
search, we may find buff.

So, let's begin. Let's start simple.exe, enter any password that comes to mind (KPNC Kaspersky ++, for example),
ignore the Wrong cry and press <Ctrl>+<D> — the key combination for calling Softice. We needn't search blindly:
Windows NT/9x isn't Windows 3.x or MS-DOS, with a common address space for all processes. Now, to keep one
process from inadvertently intruding on another, each is allotted address space for its exclusive use. For example,
process A may have the number 0x66 written at address 23:0146660, process B may have 0x0 written at the same
address, 23:0146660, and process C may have a third value. Each process — A, B, or C — won't even suspect the
existence of the others (unless it uses special resources for interprocessor communication).

You can find a more detailed consideration of all these issues in books by Helen Custer and Jeffrey Richter. Here,
we're more worried about another problem: The debugger called by pressing the <Ctrl>+<D> key combination
emerges in another process (most likely in Idle), and a context search over memory gives no results. We need to
manually switch the debugger to the necessary address space.

From the documentation that comes with Softlce, you may know that switching contexts is performed by the ADDR
command, with either the process name truncated to eight characters or its PID. You can get that with another
command — PROC. In cases where the process name is syntactically indistinguishable from a PID — "123", for
example — we have to use the PID (the second column of digits in the PROC report).

:addr simple

Now, let's try the addr simple command. Nothing happens. Even the registers remain the same! Don't worry; the word
"simple" is in the lower-right corner, identifying the current process. Keeping the same register values is just a bug in
Softlce. It ignores them, and only switches addresses. This is why tracing a switched program is impossible.
Searching, however, is another matter.

:s 23:0 L -1 "KPNC Kaspersky"



The first argument after s is the search start address, written as selector:offset. In Windows 2000, selector 23 is used
address data and the stack. In other operating systems, the selector may differ. We can find it by loading any program,
and then read the contents of the DS register.

In general, starting a search from a zero offset is silly. According to the memory map, the auxiliary code is located
there, and will unlikely contain the required password. However, this will do no harm, and will be much faster than
trying to figure out the program load address and where to start the search. The third argument — L-1 — is the length
of the area to search, where -1 means search until successful. Note that we are not searching for the entire string, but
only for part of it (KPNC Kaspersky, hot KPNC Kaspersky++). This allows us to get rid of false results. Softlce likes to
display references to its own buffers containing the search template. They are always located above 0x80000000,
where no normal password ever lives. Nevertheless, it'll be more demonstrative if just the string we need is found
using an incomplete substring.

Pattern found at 0023:00016E40 (00016E40)

We found at least one occurrence. But what if there are more of them in memory? Let's check this by issuing s
commands until the message Pattern not found is received, or until the upper search address of 0x80000000 is
exceeded.

s

Pattern found at 0023:0013FF18 (0013FF18)

s

Pattern found at 0023:0024069C (0024069C)

s

Pattern found at 0023:80B83F18 (80B83F18)

We have three! Isn't this too much? It would be silly to set all three breakpoints. In this case, four debug-processor
registers will suffice, but even three breakpoints are enough to get us lost! What would we do if we found ten matches?

Let's think: Some matches likely result from reading the input via the keyboard and putting characters into the system
buffers. This seems plausible. How can we filter out the "interference?"

The memory map will help: Knowing the owner of an area that possesses a buffer, we can say a lot about that buffer.
By typing in map32 simple, we obtain approximately the following:

:map32 simple

Owner  ObjName Obj# Address Size  Type

simple .text 0001 001B:00011000 00003F66 CODE RO
simple .rdata 0002 0023:00015000 0000081E IDATA RO
simple .data 0003 0023:00016000 O00001E44 IDATA RW

Hurrah! One of the matches belongs to our process. The buffer at address 0x16E40 belongs to the data segment and
is probably what we need. But we shouldn't be hasty; everything may not be as simple as it seems. Let's look for the
address 0x16E40 in the simple.exe file. (Taking into account the reverse sequence of bytes, it'll be 40 6E 01 00.)

> dumpbin /SECTION:.data /RAWDATA simple.exe

RAW DATA #3
00016030: 45 6E 74 65 72 20 70 61 73 73 77 6F 72 64 3A 00 Enter password:.
00016040: 6D 79 47 4F 4F 44 70 61 73 73 77 6F 72 64 0A 00 myGOODpassword..
00016050: 57 72 6F 6E 67 20 70 61 73 73 77 6F 72 64 0OA 00 Wrong password..
00016060: 50 61 73 73 77 6F 72 64 20 4F 4B 0OA 00 00 00 00 Password OK.....
00016070: 40 6E 01 00 00 00 00 00 40 6E 01 00 01 01 00 00 @n
00016080: 00 00 00 00 00 00 00 00 00 10 00 00 00 00 00 OO ................

We found two of them there. Let's see what references the first one by looking for the substring 16070 in the
decompiled code.

00011032: 68 70 60 01 00 push  16070h
00011037: 6A 64 push  64h ; Max. Password length (== 100 dec)
00011039: 8D 4D 98 lea  ecx, [ebp-68h]
; The pointer to the buffer
; in which the password should be written
0001103C: 51 push  ecx
0001103D: EB E200 0000 call 00011124 ;fgets



00011042: 83 C4 0C add esp, OCh ; Popping up three arguments

It should be clear where we are in the code, except for a mysterious pointer to 0x16070. In MSDN, where the prototype

of the fgets function is described, we'll discover "the mysterious stranger" is a pointer to the FILE structure. (According

to C convention, arguments are pushed onto the stack from right to left.) The first member of the FILE structure is the

pointer to the buffer. (In the standard C library, the file input/output is buffered with a size of 4 KB by default.) Thus,
the address 0x16E40 is a pointer to an auxiliary buffer, and we can cross it off the list of candidates.

Candidate No. 2 is 0x24069C. It falls outside the data segment. In general, it's not clear to whom it belongs. Remember
the heap? Let's see what's there.
:heap 32 simple

Base Id Cmmt/Psnt/Rsvd Segments Flags Process

00140000 01 0003/0003/00FD 1 00000002 simple

00240000 02 0004/0003/000C 1 00008000 simple

00300000 03 0008/0007/0008 1 00001003 simple

That's it. We just need to clarify who allocated the memory — the system, or the programmer. The first thing that
jumps out is the suspicious and strangely undocumented 0x8000 flag. We can find its definition in WINNT.H, but this
won't be helpful unless it shows the system using the flag.

#define HEAP_PSEUDO_TAG_FLAG 0x8000

To be convinced, load any application into the debugger and give the command heap 32 proc_name. The system
automatically allocates three areas from the heap — exactly like those in our case. This means that this candidate also
has led nowhere.

One address remains: 0x13FF18. Does it remind you of anything? What was the ESP value while loading? It seems
that it was 0x13FFC4. (Note that in Windows 9, the stack is located in another place. Nevertheless, this reasoning also
works for it: Just remember the stack location in your own operating system and know how to recognize it.)

Since the stack grows from the bottom up (i.e., from higher addresses to lower ones), the address 0x13FF18 is located
on the stack. That's why it's similar to buffers. In addition, most programmers allocate buffers in local variables that, in
turn, are allocated on the stack by the compiler.

Shall we try to set a breakpoint here?

:bpm 23:13FF18
X
Break due to BPMB #0023:0013FF18 RW DR3 (ET = 369.65 microseconds)
MSR LastBranchFromlp = 0001144F
MSR LastBranchTolp = 00011156
001B:000110B0 mov eax, [edx]
001B:000110B2 cmp al, [ecx]
001B:000110B4 jnz 000110E4
001B:000110B6 or al, al
001B:000110B8 jz 000110EO0
001B:000110BA cmp ah, [ecx+01]
001B:000110BD jnz 000110E4
001B:000110BF or ah, ah

We're in the body of the comparing procedure, which should be familiar. Let's display the values of the EDX and ECX
pointers to find out what is being compared.

:d edx
0023:0013FF18 4B 50 4E 43 2D 2D 0A 00-70 65 72 73 6B 79 2B 2B KPNC Kaspersky++

:d ecx
0023:00016040 6D 79 47 4F 4F 44 70 61-73 73 77 6F 72 64 0A 00 myGOODpassword..

We've already discussed everything else that needs to be done. Let's quit the comparing procedure using the P RET
command. Then, we need to find a branch, note its address, and correct the executable file. We're done.

You now are acquainted with one common way of cracking protection based on matching passwords. (Later, you'll see
that this method is also suitable for cracking protection based on registration numbers.) Its main advantage is its



simplicity. There are at least two drawbacks:

B |f the programmer clears the buffer after making a comparison, a search for the entered password will
give nothing unless the system buffers remain. These are difficult to erase. However, it's also difficult
to trace the password from system to local buffers!

B With the abundance of auxiliary buffers, it can be difficult to find the "right" one. A programmer may
allocate the password buffer in the data segment (a static buffer), on the stack (a local buffer), or on
the heap. The programmer may even allocate memory using low-level VirtualAlloc calls. As a result, it
sometimes appears necessary to go through all obtained occurrences.

Let's analyze another example: crackmeOLl. It's the same as simple.exe except for its graphic user interface (GUI). Its
key procedure looks like this:

Listing 5: The Source Code of the Key Procedure of crackme01

void CCrackme_01D1g: :0nOK()
{
char buffPASSWORD_SIZE];
m_password.GetWindowText (&buff[0], PASSWORD_SIZE);
if (strcmp (&buff[0] , PASSWORD) )
{
MessageBox("Wrong password") ;
m_password.SetSel (0,-1,0) ;
return;
}

else

{

MessageBox ("Password OK");
}
CDialog: :0nOK() ;
}

Everything seems straightforward. Enter the password KPNC Kaspersky++ as usual, but before you press the OK
button in response to the wrong password dialog, call the debugger and switch the context.

:s 23:0 L -1 'KPNC Kaspersky'

Pattern found at 0023:0012F9FC (0012F9FC)
s

Pattern found at 0023:00139C78 (00139C78)

There are two occurrences, and both are on the stack. Let's begin with the first one. Set a breakpoint and wait for the
debugger to emerge. The debugger's window does not make us wait long, but it shows some strange code. Press the
<x> key to quit. A cascade of windows follows, each less intelligible than the previous one.

We can speculate that the CCrackme_01D1g: :OnOK function is called directly when the OK button is pressed: It's
allotted part of the stack for local variables, which is deallocated automatically when the function is exited. Thus, the
local buffer with the password that we've entered exists only when it is checked, and then it is erased automatically.
Our only bit of luck is the modal dialog, which tells us that we entered the wrong password. While it remains on the
screen, the buffer still contains the entered password, which can be found in memory. But this does little to help us
trace when this buffer will be accessed. We have to sort through the false windows one by one. At last, we see the
string we seek in the data window and some intelligent code in the code window.

0023:0012F9FC 4B 50 4E 43 20 4B 61 73-70 65 72 73 6B 79 2B 2B KPNC
Kaspersky++

0023:0012FA0C 00 01 00 00 OD 00 00 00-01 00 1C CO A8 AF 47 00

..G.

0023:0012FA1C 10 9B 13 00 78 01 01 00-FO 3E 2F 00 00 00 00 00

WX >l

0023:0012FA2C 01 01 01 00 83 63 E1 77-F0 AD 47 00 78 01 01 00



...CW..G.X...

001B:004013E3 8A10 mov d1, [eax]
001B:004013E5 8A1E mov bl, [esi]
001B:004013E7 8ACA mov cl,d1
001B:004013E9 3AD3 cmp di, bl
001B:004013EB 751E jnz 0040140B
001B:004013ED 84C9 test cl1,cl
001B:004013EF 7416 jz 00401407
001B:004013F1 8A5001 mov dl, [eax+01]

Let's see where ESI points.
:d esi

0023:0040303C 4D 79 47 6F 6F 64 50 61-73 73 77 6F 72 64 00 00 MyGoodPassword..

All that remains is to patch the executable file. Here, more difficulties are waiting for us. First, the compiler has
optimized the code, inserting the strcmp code instead of calling it. Second, it's swarming with conditional jumps! It will
take a lot of work to find what we need. Let's approach the problem in a scientific way by viewing the disassembled
code, or, to be more exact, its key fragment that compares the passwords:

>dumpbin /DISASM crackme_01.exe

004013DA: BE 3C 3040 00 mov esi, 40303Ch

0040303C: 4D 79 47 6F 6F 64 50 61 73 73 77 6F 72 64 00 MyGoodPassword
A pointer to the reference password was placed in the ESI register.

004013DF: 8D 44 24 10 lea eax, [esp+10h]

A pointer to the user-supplied password was placed in the EAX register.
004013E3: 8A 16 mov  d1, byte ptr [esi]

004013ES5: 8A 1E mov b1, byte ptr [esi]

004013E7: 8A CA mov cl,dl

004013E9: 3A D3 cmp di, bl

A comparison was made to the first character.

004013EB: 751E  jne  0040140B « --(3)-- - (1)

If the first character didn't match, a jump was made. Further checking would be pointless.

004013ED: 84 C9 test cl, cl

Did the first character equal zero?

004013EF: 74 16 je 00401407 --- - (2)

If so, we reached the end of line and the passwords would be identical.

004013F1: 8A 50 01 mov  d1, byte ptr [eax+1]
004013F4: 8A 5E 01 mov b1, byte ptr [esi+1]
004013F7: 8A CA mov  cl,d1l
004013F9: 3A D3 cmp di, bl

The next pair of characters were checked.

004013FB: 75 OE jne  0040140B --- - (1)

If they were not equal, the check was stopped.

004013FD: 83 C0 02 add eax, 2
00401400: 83 C6 02 add esi, 2

The next two characters were examined

00401403: 84 C9 test cl,cl

Did we reach the end of line?

00401405: 75 DC jne  004013E3 - (3)



No, we didn't. Matching was continued.

00401407: 33 CO Xor  eax, eax «---(2)

00401409: EB 05 jmp 00401410 ---— (4)

This shows EAX was cleared (strcmp returns zero if successful) and quit.

00401408B: 1B CO sbb  eax, eax —---(3)
0040140D: 83D8 FF  shb  eax, OFFFFFFFFh

This branch is executed when the passwords don't match. EAX was set to a nonzero value. (Guess why.)

00401410: 85 CO test eax, eax —--(4)

If EAX equaled zero, a check was made.

00401412: 6A 00 push 0
00401414: 6A 00 push 0

Something was placed on the stack.

00401416: 74 38 je 00401450<<<<-- - (5)

A jump was made somewhere.

00401418: 68 2C 30 40 00 push 40302Ch
0040302C: 57 72 6F 6E 67 20 70 61 73 73 77 6F 72 64 00 .Wrong password

Aha! "Wrong password." (The code that follows isn't of interest; it's just displaying error messages.)

Now that we understand the algorithm, we can crack it (for example, by replacing the conditional jump in line 0x401416
with an short unconditional jump, such as OxEB).




Method 2: Setting a Breakpoint at the Password Input Function

We can't call the previous method of directly searching for the entered password elegant or practical. Why should we
search for the password, stumbling over irregularly scattered buffers, when we can place a breakpoint directly on the
function that reads it? Will it be easier to guess which function the developer used?

The operation can be performed with one of just a few functions. Looking them up won't take a lot of time. In particular,
editable field contents often are read with GetWindowTextA or, less frequently, with GetDIgltemTextA.

Since we're talking about windows, let's start our GUI crackme01 example and set a breakpoint at the GetwindowTextA
function ("bpx GetWindowTextA"). Since this is a system function, the breakpoint will be global (i.e., it will affect all
running applications). Therefore, close all unneeded programs. If you set the breakpoint before starting crackme01,
you'll get several false windows because the system reads the window contents when displaying the dialog.

Let's enter KPNC Kaspersky++ as usual, then press the <Enter> key. The debugger will show up instantly.

USER32!GetWindowTextA

001B: 77E1A4E2 55 push ebp

001B: 77E1A4E3 8BEC mov ebp, esp

001B: 77E1A4E5 6AFF push FF

001B: 77E1A4E7 6870A5E177 push 77E1A570

001B: 77E1A4EC 68491DE677 push 77E61D49

001B: 77E1A4F1 64A100000000 mov eax, fs: [00000000]
001B: 77E1A4F7 50 push eax

Many hacking manuals recommend that we immediately quit the function with P RET, saying there's no need to
analyze it. But, we needn't hurry! We should clarify where the entered string is located and set a breakpoint at it. Let's
look at the arguments the function accepts and the sequence in which it accepts them. (If you don't remember, view
the SDK documentation.)

int GetWindowText (
HWND hwnd, /I Handle to window or control with text
LPTSTR IpString, // Address of buffer for text
int nMaxCount  // Maximum number of characters to copy

)

If a program is written in C, it may seem that the arguments are written on the stack according to the C convention.
Nothing of the kind! All Windows API functions are called according to the Pascal convention, regardless of the
language in which the program is written. Thus, arguments are pushed on the stack from left to right, and the last
argument onto the stack is the return address. In 32-bit Windows, all arguments and the return address occupy a
double word (4 bytes). Therefore, to reach the pointer to the string, you need to add 8 bytes to the stack's top poin
Eegister, or ESP (one double word for nMaxCount, and another one for IpString). This is represented more clearly in&'
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Figure 3: The stack when calling GetWindowText

In Softlce, you can display the contents of a specified address using the * operator. (See the debugger documentation
for more details.)

:d * (esp+8)

0023:0012F9FC 1C FA 1200 3B5AE1 77-EC4D E1 77 06 020500 ... . ;Zw.M.w... .
0023:0012FA0C 01 01 00 00 10 00 00 00-01 00 2A CO 10 A84800 ... ... ... . *...H.
0023:0012FA1C 10 9B 13 00 0A 02 04 00-E8 3E 2F 00 00 00 00 00 ... ... ... >/ ...

0023:0012FA2C 01 02 04 00 83 63 E1 77-08 DE 48 00 0A 02 04 00 ... .. c.w. .H... ..

The buffer is filled with garbage because the string hasn't been read yet. Let's quit the function with P RET and see
what happens. (Note that it will be impossible to use d *esp+8; after we exit the function, its arguments will be pushed
off the stack.)

ipret

:d 0012F9FC

0023:0012F9FC 4B 50 4E 43 20 4B 61 73-70 65 72 73 6B 79 2B 2B KPNC Kaspersky++
0023:0012FAO0C 00 01 00 00 OD 00 00 00-01 00 1C 80 10 A8 48 Q0 .............. H.

0023:0012FA1C 10 9B 13 00 OA 02 04 00-E8 3E 2F 00 00 00 00 QO ......... >.....
0023:0012FA2C 01 02 04 00 83 63 E1 77-08 DE 48 00 OA 02 04 Q0 .....c.w..H.....

This is the buffer we need. Set a breakpoint and wait for the debugger window to show up. Look! (Do you recognize
the comparing procedure?) After the first try, we are where we want to be.

001B:004013E3 8A10 mov  dI, [eax]
001B:004013E5 8A1E mov b, [esi]
001B:004013E7 8ACA mov  cl, dl
001B:004013E9 3AD3 cmp dl, bl
001B:004013EB 751E jnz ~ 0040140B
001B:004013ED 84C9 test cl, cl
001B:004013EF 7416 jz 00401407

001B:004013F1 8A5001 mov  dl, [eax+01]
This is wonderful! Elegantly, quickly, beautifully — and without any false hits — we defeated the protection.

This method is universal; we'll take advantage of it many times. It simply requires us to determine the key function and
set a breakpoint at it. In Windows, all attempts to read a password (calls to a key file, to the registry, etc.) are reduced
to calls of API functions. There are many, but the number is finite and known beforehand.
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Method 3: Setting a Breakpoint on Messages

Anyone who has had a chance to program in Windows knows that interaction with the operating system is based on
messages. Practically all Windows API functions are high-level "wrappers" that send messages to Windows. The
GetWindowTextA function, an analog of the WM_GETTEXT message, is not an exception.

Consequently, a developer doesn't need to call GetWindowTextA to get the text from an edit window; SendMessageA
(hWnd, WM_GETTEXT, (LPARAM) &buff [0]) can be used. crack02 does just that. Try to load it and set a breakpoint at
GetWindowTextA (GetDlgltemTextA). What happened? It didn't work. Developers use such tricks to lead novice hackers
astray.

In this case, you could set a breakpoint at SendMessageA. However, setting a breakpoint at the WM_GETTEXT
message is a more universal solution, which works regardless of how the window's contents are read.

In Softlce, a special command sets a breakpoint on messages: BMSG. But isn't it more interesting to do it yourself?

As you probably know, each window has a special window procedure associated with it (i.e., for receiving and
processing messages). You could find it and set a breakpoint. The HWND command gives information on the windows
of the specified process.

<Ctrl-D>

:addr crack02

:hwnd crack02

Handle Class WinProc TID
Module

050140 #32770 (Dialog) 6C291B81 2DC
crack02

05013E Button 77E18721 2DC
crack02

05013C Edit 6C291B81 2DC
crack02

05013A Static 77E186D9 2DC
crack02

You can locate quickly the edit window with the window procedure address 0x6C291B81. Should you set a breakpoint?
No, it's not time yet. Remember that the window procedure is called on more occasions than when the text is read. It
would be better to set a breakpoint after you have filtered out all other messages. To begin, study the prototype of this
function:

LRESULT CALLBACK WindowProc(

HWND hwnd, /I Handle to window

UINT uMsg, /I Message identifier

WPARAM wParam, // First message parameter
LPARAM IParam // Second message parameter

)

It's easy to calculate that, when calling the function, the uMsg argument (the message identifier) is offset by 8 bytes
relative to the stack-top pointer, ESP. If the value at that position equals WM_GETTEXT (0xD), that is when you want to
break!

Here, mention must be made of conditional breaks. Their syntax is considered in detail in the debugger
documentation. Programmers familiar with C, however, should find the syntax concise and intuitive.

:bpx 6C291B81 IF (esp-->8)==WM_GETTEXT
X

Now, quit the debugger. Enter any text as a password, such as Hello, and press the <Enter> key. The debugger will
show up right away.



Break due to BPX #0008:6C291B81 IF ((ESP-->8)==0xD) (ET=2.52 seconds)

You need to determine the address with the read string. The pointer to the buffer is transferred to the buffer through
the IParam argument (see SDK for the description of WM_GETTEXT), and IParam itself is placed on the stack at an
offset of 0x10 relative to ESP.

Return address « ESP
hwnd ~ ESP + 0x4
uMsg «— ESP + 0x8
wParam ~ ESP + 0xC
IParam «~ ESP + 0x10

Now, output this buffer to the data window, quit the window procedure with P RET, and... see the text Hello, which you
just entered.

:d * (esp+10)

:p ret

0023:0012EB28 48 65 6C 6C 6F 00 05 00-0D 00 00 00 FF 03 00 00 Hello...........
0023:0012EB38 1C ED 12 00 01 00 00 00-0D 00 00 00 FD 86 E1 77 ............... w
0023:0012EB48 70 3C 13 00 00 00 00 00-00 00 00 00 00 00 00 00 pP<.......ccevee
0023:0012EB58 00 00 00 00 00 00 00 00-98 EB 12 00 1E 87 E1 77 ............... w

:bpm 23:12EB28

Set the breakpoint given above. The debugger will show up at one "spontaneous" point. (It is obviously "nonuser"
code because CS has a value of 0008.) Prepare to press the <x> key to continue tracking the break. You'll suddenly
catch sight of the following:

0008:A00B017C 8A0A mov cl, [edx]
0008:A00B017E 8808 mov [eax], cl
0008:A00B0180 40 inc eax

0008:A00B0181 42 inc edx

0008:A00B0182 84C9 test cl, cl

0008:A00B0184 7406 jz A00BO18C
0008:A00B0186 FF4C2410 dec dword ptr [esp+10]
0008:A00B018A 75F0 jnz A00B017C

Aha! The buffer is passed by value, not by reference. The system doesn't allow you to access the buffer directly; it only
provides a copy. A character in this buffer, pointed to by the EDX register is copied to CL. (It is clear that EDX contains
a pointer to this buffer; it caused the debugger to appear.) Then it's copied from CL to the [EAX] location, where EAX is
some pointer (about which we can't yet say anything definite). Both pointers are incremented by one, and CL (the last
character read) is checked for equality to zero. If the end of the string isn't reached, the procedure is repeated. If you
have to watch two buffers at once, set one more breakpoint.

:bpm EAX

X

The debugger soon pops up at the other breakpoint. You should recognize the comparing procedure. The rest is
trivial.

001B:004013F2 8A1E mov bl [esi]
001B:004013F4 8ACA mov cl, dl
001B:004013F6 3AD3 cmp dl, bl
001B:004013F8 751E jnz 00401418
001B:004013FA 84C9 test cl, cl
001B:004013FC 7416 jz 00401414
001B:004013FE 8A5001 mov dl, [eax+01]
001B:00401401 8A5E01 mov bl [esi+01]

In Windows 9x, messages are processed somewhat differently than in Windows NT. In particular, the window
procedure of the edit window is implemented in 16-bit code, with a nasty segment memory model: segment:offset.
Addresses also are passed differently. What parameter contains the segment? To Addresses also are passed
differently. What parameter contains the segment? To answer that question, look at Softice's breakpoint report:



BErodk Jue o BMESG 40H W G EITEXT (ET=513.11 millisosands
nwrpl=U4C00 woa rameliGh LPg s Do NI mugoed LD :-‘.‘.*':_:..:E'TWT.'-Z'T'
Window descriptor ‘L Offset
Maximum quantity of characters to read Segiment

The entire address fits in the IParam 32-bit argument — a 16-bit segment and 16-bit offset. Therefore, the breakpoint
should look like this: bpm 28D7:0000.
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Step Five: IDA Emerges onto the Scene

Following Dennis Ritchie's example, it has become typical to begin learning a new programming language by creating
the simple "Hello, World!" program. We aren't going to sidestep this tradition. Let's evaluate the capabilities of IDA Pro
using the following example. (I recommend that you compile it using Microsoft Visual C++ 6.0. Call "cl.exe first.cpp”
from the command line to obtain results consistent with those in this book.)

Listing 6: The Source Code of the first.cpp Program

#include <iostream.h>
void main ()

{

cout<<"Hello, Sailor'\n";

}

The compiler will generate an executable file that is almost 40 KB, the majority of which will be occupied with auxiliary,
start, or library code! Attempts to disassemble the code using a disassembler such as W32Dasm won't be successful;
the listing will be more than 500 KB! You can imagine how much time will be eaten up, especially if serious problems
occupy dozens of megabytes of disassembled code.

Let's try to disassemble this program using IDA. If the default settings are used, the screen should look as follows
upon completion of the analysis (although variations are possible depending on the version):

1] el §

s b il

Figure 4: The IDA Pro 3.6 console interface
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Figure 6: The IDA Pro 4.0 GUI interface

Beginning with version 3.8x (possibly earlier), collapsing support appeared in IDA. This feature considerably simplifies
code navigation, allowing us to remove lines from screen that aren't of interest at the moment. By default, all library
functions are collapsed.

You can expand a function by positioning the cursor on it and pressing the <+> key on the numeric keypad. The <->
key is used to collapse the function.

After finishing analysis of the first.exe file, IDA places the cursor on the line .text:00401B2C — the program's entry point.
Many novice programmers mistakenly believe that programs written in C start executing from the main function.
Actually, immediately after the file is loaded, control is passed to the Start function inserted by the compiler. It prepares
the following global variables:_osver (the operating system build number), winmajor (the major version number of the
operating system), _winminor (the minor version number of the operating system), _winver (the complete version of the
operating system incorporating winmajor and winminor), _argc (the number of arguments on the command line), argv (an
array of pointers to the argument strings), and environ (an array of pointers to environment variable strings). The Start
function also initializes the heap and calls the main function. After returning control, it completes the process using the
Exit function. The following program allows us to clearly demonstrate the process of initializing variables performed by
the start code:

Listing 7: The Source Code of the CRt0.demo.c Program
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software.) Therefore, disassemblers strongly depend on the version and completeness of the package. Not all IDA Pro
versions are capable of working with programs generated by present-day compilers. (See the %IDA%/SIG/list file for
the list of supported compilers.)

Listing 10: The Start Code of first.exe Obtained Using IDA Pro 4.01

00401B2C start proc near
00401B2C

00401B2C var_20 = dword ptr -20h
00401B2C var_1C  =dword ptr -1Ch
00401B2C var_18 = dword ptr -18h
00401B2C var_14  =dword ptr -14h

00401B2C var_4 = dword ptr -4

00401B2C

00401B2C push ebp

00401B2D mov  ebp, esp

00401B2F push OFFFFFFFFh
00401B31 push offset stru_407170
00401B36 push offset __except_handler3
00401B3B mov  eax, large fs:0
00401B41 push eax

00401B42 mov large fs:0, esp
00401B49 sub  esp, 10h

00401B4C push ebx

00401B4D push esi

00401B4E push edi

00401B4F mov  [ebp+var_18], esp
00401B52 call ds:GetVersion
00401B58 xor  edx, edx

00401B5A mov  dl, ah

00401B5C mov  dword_4087B0, edx
00401B62 mov  ecx, eax

00401B64 and ecx, OFFh

00401B6A mov  dword_4087AC, ecx
00401B70 shl  ecx, 8

00401B73 add ecx, edx

00401B75 mov  dword_4087A8, ecx
00401B7B shr  eax, 10h

00401B7E mov  dword_4087A4, eax
00401B83 push 0

00401B85 call __heap_init

00401B8A pop ecx

00401B8B test eax, eax

00401B8D jnz  short loc_401B97
00401B8F push 1Ch

00401B91 call sub_401C30 ;_fast_error_exit
00401B96 pop ecx

00401B97

00401B97 loc_401B97: ; CODE XREF: start+611 j
00401B97 and [ebp+var_4], 0
00401B9B call __joinit

00401BA0 call ds:GetCommandLineA
00401BA6 mov  dword_409CE4, eax
00401BAB call __crtGetEnvironmentStringsA
00401BBO mov  dword_408788, eax
00401BB5 call __ setargv

00401BBA call __setenvp

00401BBF call __ cinit

00401BC4 mov  eax, dword_4087C0
00401BC9 mov  dword_4087C4, eax
00401BCE push eax

00401BCF push dword_4087B8
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00401000

00401000 sub_401000 proc near ; CODE XREF: start+AF! p
00401000 push ebp

00401001 mov  ebp, esp

00401003 push offset aHelloSailor ; "Hello, Sailorl\n"

00401008 mov  ecx, offset dword_408748

0040100D call ??6ostream@ @QAEAAVO@PBD@Z ;

0040100D ;ostream: :operator<<(char const *)

00401012 pop ebp

00401013 retn

00401013 sub_401000 endp

The disassembler recognized a string variable and has given it the meaningful name: aHelloSailor. For clarity, in the
comment on the right, it has given the original contents: "Hello, Sailor\n". If you place the cursor on aHelloSailor and
press the <Enter> key, IDA will go to the required string:

00408040 aHelloSailor db 'Hello, Sailor!,0Ah,0 ; DATA XREF: sub_401000+31 0

The comment DATA XREF: sub_401000+31 0 is known as a cross-reference: In the third line of the sub_401000
procedure, a call was made to an offset address. The "o" stands for offset, and the arrow directed upward specifies the
relative position of the cross-reference.

If you place the cursor on the sub_401000+3 expression and press the <Enter> key, IDA Pro will go to the following
line:

00401003 push offset aHelloSailor ; "Hello, Sailor'\n"

Pressing the <Esc> key cancels the previous move and returns the cursor to its initial position (like the Back command
in a Web browser). An offset to the string "Hello, Sailor\n" is passed to the procedure

??60stream@ @QAEAAVO@PBD@Z, the << operator in C++. The strange name comes from the limitation on characters
that can be used in names of library functions. Compilers automatically mangle such names, transforming them into
gobbledygook suitable only for operation with the linker. Few novice programmers suspect such hidden
"machinations."

To facilitate analysis of code, IDA Pro displays the "correct” names in the comments, but it can be forced to show
demangled names everywhere. To do this, we need to select the Demangled names item from the Options menu, then
set the Names radio button in the dialog box that pops up; after that, the call to the << operator will appear as follows:

0040100D call ostream: :operator<<(char const *)
At this point, the analysis of the first.cpp application is complete. We only have to rename the sub_401000 function to

main. For this, we need to position the cursor on the 0x0401000 string (the function's start address), press the <N> key,
and enter "main” in the dialog box that opens. The result should look like this:

00401000 ; --------==-===--==---- SUBROUTINE ------mmmmmmmmmmmeeo
00401000

00401000 ; Attributes: bp-based frame

00401000

00401000 main proc near ; CODE XREF: start+AF| p
00401000 push ebp

00401001 mov  ebp, esp

00401003 push offset aHelloSailor ; "Hello, Sailor'\n"
00401008 mov  ecx, offset dword_408748

0040100D call ostream: :operator<<(char const *)
00401012 pop ebp

00401013 retn

00401013 main endp

Compare this to W32Dasm. (Only the contents of the main function are given.)

:00401000 55 push ebp
:00401001 8BEC mov ebp, esp

Possible StringData Ref from Data Obj -->"Hello, Sailor!"



:00401003 6840804000 push 00408040
:00401008 B948874000 mov ecx, 00408748
:0040100D EBABOO0000O  call 004010BD
:00401012 5D pop ebp

:00401013 C3 ret

Another important advantage of IDA is the ability to disassemble encrypted programs. In the example
/ISRC/Crypt.com, a static encryption method, frequently found with "wrapper" protections, was used. This simple trick
"dazzles" most disassemblers. For example, processing the Crypt.com file using Sourcer results in:

Crypt proc far
7E5B:0100 start:
7E5B:0100 83 C6 06 add si, 6
7E5B:0103 FF E6 jmp  si;*
; *No entry point to code
7E5B:0105 B9 14BE mov  cx, 14BEh
7E5B:0108 01 AD 5691 add ds:data_le[di], bp ; (7E5B:5691=0)
7E5B:010C 80 34 66 xor  byte ptr [si], 66h ; 'f
7E5B:010F 46 inc si
7E5B:0110 E2 FA loop $-4 ;Loopifcx>0
7E5B:0112 FF E6 jmp si ¥
; *No entry point to code
7E5B:114 18 00 sbb  [bx+si], al
7E5B:116 D2 6F DC shr  byte ptr [bx-24h], cl ; Shift w/zeros fill

7E5B:119 6E 67 AB 47 A5 2E db 6Eh, 67h, 0ABh, 47h, 0A5h, 2Eh
7E5B:11F 03 OA OA 09 4A 35 db 03h, 0Ah, 0Ah, 09h, 4Ah, 35h
7E5B:125 07 OF OA 09 14 47 db 07h, OFh, OAh, 09h, 14h, 47h
7E5B:12B 6B 6C 42 E8 00 00 db 6Bh, 6Ch, 42h, E8h, 00h, 00h
7E5B:131 59 5E BF 00 01 57 db 59h, 5Eh, BFh, 00h, 01h, 57h
7E5B:137 2B CEF3 A4 C3 db 2Bh, CEh, F3h, A4h, C3h

Crypt endp

Sourcer failed to disassemble half of the code, leaving it as a dump, and it incorrectly disassembled the other half! The
JMP Sl instruction at line : 0x103 jumps to the address :0x106. (When the COM file is loaded, the value in the SI
register is equal to 0x100; therefore, after the ADD S|, 6 instruction is executed, the S| register contains 0x106.)
However, the instruction following the JMP is at address 0x105! The source code has a dummy byte inserted in this
location, which leads the disassembler astray. That byte is interpreted as the next instruction, leading to a shift in the
code to be disassembled.

Start:

add si, 6

jmp si

db OB9H

lea si, _end ; to the beginning of the encrypted fragment

Sourcer is unable to predict register change points. After encountering the JMP SI instruction, it continues
disassembling, silently assuming that instructions are sequential. It's possible to create a file of definitions that would
indicate a byte of data is located at address 0x105, but this is inconvenient.

In contrast to Sourcer-like disassemblers, IDA was designed as an interactive, user-friendly environment. IDA doesn't
make assumptions; if difficulties arise, it asks the user for help. Therefore, after encountering a register change to an
unknown address, it stops further analysis. This means the result of analyzing the Crypt.com file looks like this:

seg000:0100 start proc near
seg000:0100 add si, 6
seg000:0103 jmp  si
seg000:0103 start endp

seg000:0103
seg000:0103 ;
seg000:0105 db 0B9h ;




seg000:0106 db OBeh; -

seg000:0107 db 14h;
seg000:0108 db 1;
seg000:0109 db OAdh ;i
seg000:010A db 91h; N

We can help the disassembler by specifying the jump address. In this situation, novice users usually bring the cursor to
the corresponding line and press the <C> key, forcing IDA to disassemble the code from that position to the function's

end. However, such a solution is erroneous; we still don't know where the branch in line :0x103 points, or how the code
at address :0x106 receives control.

The correct solution is to add a cross-reference that would link line :0x103 to line :0x106. For this, we need to select
Cross references from the View menu. Then, in the dialog box that opens, we need to fill in the from and to fields with
the values seg000:0103 and seg000:0106, respectively.

As a result, the disassembler output should look as follows. (A bug in IDA 4.01.300 means adding a new
cross-reference does not always result in automatic disassembling.)

seg000:0100 public start
seg000:0100 start proc near
seg000:0100 add si, 6
seg000:0103 jmp si
seg000:0103 start endp
seg000:0103
seg000:0103 ;
seg000:0105 db OB9h
seg000:0106 ;
seg000:0106

seg000:0106 loc_0_106: ; CODE XREF: start+31 u
seg000:0106 mov  si, 114h

seg000:0109 lodsw

seg000:010A xchg ax, cx

seg000:010B push si

seg000:010C

seg000:010C loc_0_10C: ; CODE XREF: seg000:01101! j
seg000:010C xor byte ptr [si], 66h

seg000:010F inc  si

seg000:0110 loop loc_0_10C

seg000:0112 jmp si

seg000:0112 ;
seg000:0114 db 18h;
seg000:0115 db O;
seg000:0116 db OD2h; T
seg000:0117 db 6Fh ;o0

Since IDA Pro doesn't display the target address of the cross-reference, I'd suggest you display it manually. This will
improve the code's readability and simplify navigation. Place the cursor on line :0x103, press the <:> key, and enter a
comment in the dialog box that opens (for example, "jump to address 0106"). The display will change as follows:

seg000:0103 jmp  si ; Jump to address 0106

Such a comment makes it possible to jump to the specified address: Just place the cursor on 0106 and press the
<Enter> key. Note that IDA Pro doesn't recognize hexadecimal format in the C style (0x106) or in the MASM\TASM
style (0106h).

What does the value 114h represent at line :0x106 — a constant or an offset? To figure this out, we need to analyze
the LODSW instruction. Since executing it results in loading the word located at address DS:Sl into the AX register, the
offset is loaded into the Si register.

seg000:0106 mov  si, 114h
seg000:0109 lodsw



Pressing the <O> key transforms the constant to an offset. The disassembled code will appear like this:

seg000:0106 mov  si, offset unk_0_114
seg000:0109 lodsw

seg000:0114 unk_0_114db 18h ; DATA XREF: seg000:01061 o

seg000:0115 db 0 ;
seg000:0116 dbobD2h ;T
seg000:0117 db 6Fh ;o0

IDA Pro automatically created a new name —unk_0_114— that refers to an unknown variable with a size of 1 byte. But
the LODSW instruction loads a word into the AX register; therefore, we need to go to line :0144 and press the <D> key
twice to obtain the following code:

seg000:0114 word_0_114 dw 18h ; DATA XREF: seg000:01061 o
seg000:0116 db OD2h; T

What does the word_0_144 location contain? The following code will help us find out:

seg000:0106 mov si, offset word_0_114

seg000:0109 lodsw

seg000:010A xchg ax, cx

seg000:010B push si

seg000:010C

seg000:010C loc_0_10C: ; CODE XREF: seg000:0110/ j
seg000:010C xor byte ptr [si], 66h

seg000:010F inc si

seg000:0110 loop loc_0_10C

In line :0x10A, the AX register value is moved to the CX register, then used by the LOOP LOC_010C instruction as a
loop counter. The loop body is a simple decoder: The XOR instruction decrypts a byte pointed to by the Si register, and
the INC Sl instruction moves the pointer to the next byte. Therefore, the word_0_144 location contains the number of
bytes to be decrypted. Place the cursor on it, press the <N> key, and give it a better name ("BytesToDecrypt", for
example).

There's one more unconditional register jump after the decryption loop.

seg000:0112 jmp si

To find out where it transfers control, we need to analyze the code and determine the Sl register's contents. For this,
the debugger is often used: We set a breakpoint on line 0x112 and, when the debugger window pops up, look for the
register value. IDA Pro generates MAP files that contain the debugger information especially for this purpose. In
particular, to avoid memorizing the numerical values of all the addresses being tested, each of them can be assigned
easily remembered names. For example, if you place the cursor on line seg000:0112, then press the <N> key and
enter "BreakHere", the debugger will be able to calculate the return address automatically using its name.

To create a MAP file, click on Produce output file in the File menu and select Produce MAP file from the drop-down
submenu, or press the <Shift>+<F10> key combination. In either case, a dialog box will appear, which allows us to
specify the data to include in the MAP file: information on segments, nhames automatically generated by IDA Pro
(loc_0_106, sub_0x110, etc.), and demangled names. The contents of the MAP file obtained should be as follows:

Start Stop Length Name Class
00100H 0013BH 0003CH seg000 CODE
Address Publics by Value

0000:0100 start

0000:0112 BreakHere

0000:0114 BytesToDecrypt

Program entry point at 0000:0100

This format is supported by most debuggers, including the most popular one: Softlce. It includes the msym utility,
launched by specifying the MAP file on the command line. The SYM file obtained should be placed in the directory
where the program being debugged is located, then loaded from the loader without specifying the extension (WLDR
Crypt, for example). Otherwise, the character information won't be loaded.



Then, we need to set a breakpoint using the bpx BreakHere command, and quit the debugger with the x command. In a
second, the debugger window will pop up again, informing us that the processor has reached a breakpoint. Looking at
the registers displayed at the top of the screen by default, we can see that Sl equals Ox12E.

This value can also be calculated mentally, without using the debugger. The MOV instruction at line 0x106 loads the
offset 0x114 into the Sl register. From here, the LODSW instruction reads the quantity of decrypted bytes —0x18— and
the Sl register is increased by the word size (2 bytes). Hence, when the decryption cycle is complete, the Si value will
be 0x114+0x18+0x2 = Ox12E.

After calculating the jump address in the line 0x112, let's create a corresponding cross-reference (from 0x122 to 0x12E)
and add a comment to line 0x112 ("Jump to address 012E"). Creating the cross-reference automatically disassembles
the code from the address seg000:012E to the end of the file.

seg000:012E loc_0_12E: ; CODE XREF: seg000:01121u

seg000:012E call $+3
seg000:0131 pop cx
seg000:0132 pop si
seg000:0133 mov  di, 100h
seg000:0136 push di
seg000:0137 sub  cx, si
seg000:0139 repe movsh
seg000:013B retn

The CALL $+3 instruction ($ designates the current value of the IP instruction pointer) pushes the IP contents to a stack,
from which it can be extracted into any general-purpose register. In Intel 80x86 microprocessors, the IP register cannot
be addressed directly, and only instructions that change the course of execution can read its value, including call.

We can supplement lines 0x12E and 0x131 with a comment —MOV CX, IP— or we can calculate and substitute the
direct value —MOV CX, 0x131.

The POP SI instruction at line 0x132 pops a word off the stack and places it in the Si register. Scrolling the
disassembler upward, you will see the PUSH Sl instruction at line 0x10B. This is paired with the POP SI instruction, and
pushes the offset of the first decrypted byte to the stack. Now, the meaning of the subsequent MOV DI, 0x100\SUB CX,
and S\REPE MOVSB instructions is clear: They move the beginning of the decrypted fragment to the address starting
at offset 0x100. Such an operation is characteristic for "wrapper" protections superimposed on a compiled file that
should be "reset" to its "native" addresses before it is launched.

Before relocation, the CX register is loaded with the length of the block being copied. (The length is calculated by
subtracting the offset of the first decrypted byte from the offset of the second instruction of the code performing
relocation.) The true length is 3 bytes shorter; consequently, we need to subtract three from that value. However, the
difference has no effect: The contents of memore locations at addresses beyond the end of the decrypted fragment
aren't defined, and those locations may contain anything.

The 0x136:PUSH DI and 0x13B:RETN instructions are an analog of the CALL DI instruction: PUSH pushes the return
address on the stack, and RETN extracts it and passes control to the corresponding address. Knowing the DI value
(0x100), we can add a cross-reference (from :0x13B to :0x100) and a comment to line :0x13B — "Jump to address
0x100." However, after relocation, different code is located at the indicated addresses! Therefore, it's more logical to
add the cross-reference from: 0x13B to :0x116 and the comment "Jump to address 0x116."

After the new cross—reference is created, IDA will try to disassemble the encrypted code. The following will result:

seg000:0116 loc_0_116: ; CODE XREF: seg000:013B! u

seg000:0116 shr  byte ptr [bx-24h], cl
seg000:0119 outsb

seg000:011A stos word ptr es: [edi]
seg000:011C inc di

seg000:011D movsw

seg000:011E add cx, cs:[bp+si]
seg000:0121 or cl, [bx+di]
seg000:0123 dec dx

seg000:0124 xor ax, OF07h

seg000:0127 or cl, [bx+di]



seg000:0129 adc al, 47h
seg000:0129;

seg000:012B db  6Bh;k
seg000:012C db 6Ch;1
seg000:012D db 42h;B

seg000:012E;

Immediate disassembling of the encrypted code is impossible: It must be decrypted first. Most disassemblers aren't
able to modify analyzed code on the fly; they require it to be decrypted completely beforehand. In practice, however,
things are different. Before decrypting, we need to understand the decryption algorithm by analyzing the accessible
part of the file. Then, we can quit the disassembler, decrypt the "secret" fragment, load the file into the disassembler
again, and continue analyzing it until the next encrypted fragment occurs. We'll have to repeat the
"quit-decrypt-load-analyze" cycle.

IDA allows us to solve the same task with less effort and without quitting the disassembler. This can be achieved
because of virtual memory. We can imagine IDA is a "transparent" virtual machine, operating on the physical memory
of the computer. To modify memory, we need to know the address. This consists of a pair of numbers: a segment
address and an offset.

On the left side, each line's offset and segment name are given (seg000:0116, for example). We can get the base
address of a segment from its name: Open the Segments window and select the Segments item from the View menu.

The required address is in the Base column. (It is in bold and underlined in @.) Any location of the segment can be
addressed using the [segment:offset] construction. Memory cells can be read and modified using the Byte and PatchByte
functions, respectively. Calling a=Byte ([0x1000, 0x100]) reads the cell at0x100 offset in the segment with the base
address of 0x1000; calling PatchByte ([0x1000, 0x100], 0x27) writes the value 0x27 in the memory cell at the 0x100 offset
in the segment with the base address of 0x1000. As their names indicate, the functions work one byte at a time.

Figure 8: The Segments window

These two functions and familiarity with the C language are enough to write a decrypting script. The IDA-C
implementation doesn't follow completely the ANSI C standard. In particular, IDA doesn't allow the variable type to be
set; the decompiler automatically defines it with the auto keyword when it's used for the first time. For example, auto
MyVar, sO declares two variables: MyVar and s0.

To create a script, we need to press the <Shift>+<F2> key combination, or select IDC Command from the File menu.
Then, we must enter the source code of the program into the dialog box that pops up.
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Figure 9: An embedded script editor

Listing 11: The Source Code of a Decryption Script

auto a;
for (a=0x116; a<0x12E; a++)
PatchByte([0x1000, a], Byte([0x1000, a])"0x66);

Explanation As shown, the decryption algorithm sequentially converts the bytes of the encrypted fragment
using the XOR 0x66 operation. (This operation is highlighted in bold.)

seg000:010C xor byte ptr [si], 66h
seg000:010F inc Si
seg000:0110 loop loc_0_10C

The encrypted fragment itself starts from address seg000:0x116 and proceeds to address seg000:0x12E. Therefore,
decryption in C looks like this: for (a=0x116; a<0x12E; a++) PatchByte ([0x1000, a], Byte ([0x1000,a]*0x66);

To execute the script, press the <Enter> key (in IDA version 3.8x or higher), or the <Ctrl>+<Enter> ke
earlier versions). After executing the script, the disassembler window should show the code as it is in

nbination (in

01111
isting 12

If you encounter an error, you may have used the improper character case (IDA is case sensitive), the wrong syntax,
or a base address that does not equal 0x1000. (Call the Segments window again to check its value.) Place the cursor
on line seg000:0116 and press the <U> key to delete the previous disassembling results, then press the <C> key to
disassemble the decrypted code anew.

Listing 12: The Output of the Decryption Script

seg000:0116 loc_0_116: ; CODE XREF: seg000:013B! u
seg000:0116 mov ah, 9

seg000:0118 mov dx, 108h

seg000:011B int 21h ; DOS -- PRINT STRING
seg000:011B ; DS:DX (string terminated
seg000:011B ; by $)

seg000:011D retn

seg000:011D ;

seg000:011E db 48h;H
seg000:011F db 65h;e
seg000:0120 db 6Ch;1
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Figure 10: Creating a new segment
We can use the following script to copy the required fragment to the segment we just created:

Listing 13: The Source Code of the Copying Script

auto a;
for (a=0x0; a<0x25; a++) PatchByte([0x2000, a+0x100], Byte([0x1000, a+0x116]));

To enter this script, press the <Shift>+<F2> key combination again. The previous script will be lost. (IDA doesn't allow
us to work simultaneously with more than one script.) After the operation is complete, the disassembler screen will
look like this:

Listing 14: The Result of Executing the Copying Script

MySeg:0100 MySeg segment byte public ' ' usel6

MySeg:0100 assume cs:MySeg
MySeg:0100 ;org 100h
MySeg:0100 assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
MySeg:0100 db 0B4h ;
MySeg:0101 db 9;
MySeg:0102 db OBAh ;
MySeg:0103 db 8;
MySeg:0104 db 1;
MySeg:0105 db OCDh ;
MySeg:0106 db 21h;
MySeg:0107 db 0C3h ;
MySeg:0108 db 48h; H
MySeg:0109 db 65h;e
MySeg:010A db 6Ch; 1
MySeg:010B db 6Ch; 1
MySeg:010C db 6Fh ;o0
MySeg:010D db 2Ch;,
MySeg:010E db 20h;
MySeg:010F db 53h;S
MySeg:0110 db 61h;a
MySeg:0111 db 69h ;i
MySeg:0112 db 6Ch;1
MySeg:0113 db 6Fh; o0
MySeg:0114 db 72h;r

MySeg:0115 db 21h;!
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menu. Enter the instruction MOV DX, 128h (where 128h is the new offset of the string) and immediately make it an
offset by pressing the <Ctrl>+<O> key combination.

Now, enter the new code. Place the cursor on the ret instruction, call the assembler again, and enter XOR AX, AX
<ENTER> INT 16h <Enter> RET <Enter> <Esc>. It wouldn't be a bad idea to clean up a little: Reduce the segment size
to the one used, and move the line containing "Hello, Sailor!" upward, closer to the code.

Explanation The Disable Address option in the Segment Properties window is called by pressing the
<Alt>+<S> key combination. If it is set, you can decrease its size and delete addresses
beyond the end of the segment.

If everything is done correctly, the final result should look as follows:

Listing 17: The Final Disassembled Code

seg000:0100 ; File Name : F\IDAN\SRC\Crypt.com

seg000:0100 ; Format : MS-DOS COM-file

seg000:0100 ; Base Address : 1000h Range: 10100h-1013Ch Loaded length: 3Ch
seg000:0100
seg000:0100
seg000:0100 ;
seg000:0100
seg000:0100 ; Segment type: Pure code

seg000:0100 seg000 segment byte public 'CODE' usel6

seg000:0100 assume cs:seg000

seg000:0100 org 100h

seg000:0100 assume es:nothing, ss:nothing, ds:seg000
seg000:0100

seg000:0100 ; -------------- SUBROUTINE -

seg000:0100
seg000:0100

seg000:0100 public start

seg000:0100 start proc near

seg000:0100 add si, 6

seg000:0103 jmp si ; jump to address 0106
seg000:0103 start endp

seg000:0103
seg000:0103 ;

seg000:0105 db 0B%h ; |

seg000:0106 ;

seg000:0106 mov si, offset BytesToDecrypt

seg000:0109 lodsw

seg000:010A xchg ax, cx

seg000:010B push si

seg000:010C

seg000:010C loc_0_10C: ; CODE XREF: seg000:01101! j
seg000:010C xor byte ptr [si], 66h

seg000:010F inc  si

seg000:0110 loop loc_0_10C

seg000:0112

seg000:0112 BreakHere: ; Jump to the 012E address
seg000:0112 jmp si

seg000:0112 ;

seg000:0114 BytesToDecrypt dw 18h ; DATA XREF: seg000:01061 o

seg000:0116 ;
seg000:0116

seg000:0116 loc_0_116: ; CODE XREF: seg000:013B! u
seg000:0116 mov ah, 9

seg000:0118 mov dx, 108h ; "Hello, Sailor\r\n$"
seg000:011B int 21h ; DOS -- PRINT STRING
seg000:011B ; DS:DX (string terminated

seg000:011B ; by $)






Team LiB A FREVIOUS| MEXT b




Step Six: Using a Disassembler with a Debugger

There are two ways to analyze programs distributed without source code: disassembling (a static analysis), and
debugging (a dynamic analysis). Generally, every debugger has a built-in disassembler; otherwise, we'd have to debug
programs directly in machine code!

However, disassemblers included with debuggers usually are primitive and provide few functions. The disassembler
built into the popular Softlce debugger is not much better than DUMPBIN, whose disadvantages we have experienced.
The code becomes much more understandable when it's loaded in IDA!

When is the debugger useful? Disassemblers have several limitations because of their static nature.

First, we would have to execute the program on an "emulator" of the processor, "hardwired" into our own heads. In
other words, we would need to mentally run the entire program. To do so, we would need to know the purpose of all
processor instructions, functions, and structures of the operating system (including undocumented ones).

Second, it's not easy to start analysis at an arbitrary place in the program. We would need to know the contents of
registers and memory, but how could we find these? For registers and local variables, we can scroll the disassembler
window upward to see the values stored in these locations. But that won't work with global variables, which can be
modified by anyone at any time. If only we could set a breakpoint... But what kind of breakpoint works in a
disassembler?

Third, disassembling forces us to completely reconstruct the algorithm of each function, whereas debugging allows us
to consider a function as a "black box" that only has input and output. Let's assume that we have a function that
decrypts the main module of the program. If we're using a disassembler, we have to figure out the decryption
algorithm. (This can be a difficult task.) Then, we need to port this function into IDA-C, debug it, and launch a
decrypting program. In the debugger, it's possible to execute the function without trying to understand how it works
and, after it finishes, to continue the analysis of decrypted code. We could continue the comparison, but it's clear that
the debugger doesn't compete with the disassembler; they are partners.

Experienced hackers always use these tools in conjunction. The profram's logic is reconstructed using a disassembler,
and details are cleared up on the fly by running the program in a debugger. When doing so, hackers would like to see
in the debugger the character names assigned in the disassembler.

Fortunately, IDA Pro allows this to happen! Select the Produce output file submenu from the File menu, then click
Produce MAP file (or press the Shift>+<F10> key combination). A dialog box prompting you for a file name will appear.
(Enter simple.map or similar file name.) Then, a modal dialog box will open, asking which names should be included in
the MAP file. Press the <Enter> key, leaving all the default checkboxes. The simple.map file will contain all the
necessary debug information in Borland's MAP format. The Softlce debugger doesn't support such a format, however.
Therefore, before using the file, we need to convert it to the SYM format using the idasym utility, created for this
purpose. It can be downloaded for free from http://www.idapro.com, or obtained from the distributor who sold you IDA.

Run idasym simple.map on the command line and make sure that simple.sym has been created. Then, load the
simple.exe application in the debugger. Wait until the Softice window appears, then give the SYM command to display
the contents of the character table. Softice's response should look like this (abridged version):

:sym

CODE (001B)
001B:00401000 start
001B:00401074 __GetExceptDLLinfo
001B:0040107C _Main
001B:00401104 _memchr
001B:00401124 _memcpy
001B:00401148 _memmove
001B:00401194 _memset
001B:004011C4 _strcmp
001B:004011F0 _strlen



001B:0040120C _memcmp
001B:00401250 _strrchr
001B:00403C08 _printf
DATA(0023)
0023:00407000 aBorlandCCopyri
0023:004070D9 aEnterPassword
0023:004070E9 aMygoodpassword
0023:004070F9 aWrongPassword
0023:00407109 aPasswordOk
0023:00407210 aNotype
0023:00407219 aBccxhl

It works! It shows the character names that simplify understanding of the code. You also can set a breakpoint at any of
them — for example, bpm aMygoodpassword — and the debugger will understand what you want. You no longer need
to remember those hexadecimal addresses.




Step Seven: Identifying Key Structures of High-Level Languages

Overview

Research of execution algorithms implemented in programs written in high-level languages traditionally starts with the
reconstruction of the key structures of the source language — functions, local and global variables, branches, loops,
etc. This makes the disassembler listing more readable and considerably simplifies its analysis.

Present-day disassemblers are rather intelligent, and perform the lion's share of work when recognizing the key
structures. In particular, IDA Pro successfully copes with the identification of standard library functions, local variables
addressed via the ESP register, CASE branches, etc. However, IDA occasionally makes mistakes, thus misleading the
code digger. In addition, its high cost sometimes justifies using a different disassembler. For example, people studying
an assembler (and the best way to learn about it is to disassemble someone else's programs) can hardly afford IDA
Pro.

Certainly, there are more fish in the sea than IDA. DUMPBIN, for example, is a part of the regular SDK delivery — why
not use it, if it comes down to it? Of course, if there's nothing better on hand, DUMPBIN will do; but in this case, you'll
have to forget about the disassembler's intelligence and use your own brain.

We'll first get acquainted with nonoptimizing compilers. The analysis of their code is rather simple and quite
comprehensible, even for programming newbies. Then, having mastered the disassembler, we'll proceed to more
complex things — to optimizing compilers that generate artful and intricate code.




Functions

The function (also called a procedure or a subroutine) is the main structural unit of procedural and object-oriented
languages. Therefore, disassembling a code usually starts with identifying functions and the arguments passed to
them.

Strictly speaking, the term "function" is not used in all programming languages. Even when it is, its definition varies
from one language to another. Without going into detail, we'll take a function to be a separate routine that can be
called from various parts of a program. A function either can accept one or more arguments, or it can reject all of
them; it can return the result of its execution, or it can return nothing. This isn't important. The key property of the
function is returning control to the place from which it was called, and its characteristic feature is it can be called
repeatedly from various parts of a program (although some functions are called from only one place).

How does a function know where it should return control? Obviously, the calling code should save a return address
and pass it to the called function along with the other arguments. There are plenty of ways to solve this problem: We
can, for example, place an instruction for an unconditional jump to the return address at the end of the function before
calling it. We also could save the return address in a special variable, then, when the function's execution is complete,
make an indirect jump using this variable as an operand of the JUMP instruction. Without going into a discussion of the
strong and weak points of each method, I'd like to note that in most cases, compilers use the CALL and RET special
machine instructions for calling functions and returning from them.

The CALL instruction pushes the address of the instruction following it on top of the stack, and RET pops it out from
there and passes control to it. The address to which the CALL instruction points is the address of the function's

beginnintﬁ:;aamﬂmmma function. (However, be aware that not every RET designates a function's end!
See the "\Values Returned by Functiond" section for more details on this issue.)

Thus, we can recognize a function in two ways: by cross-references that lead to the CALL machine instruction, or by its
epilog, which ends with the RET instruction. The cross-references and the epilog allow us to determine the addresses
of the function's beginning and end. Jumping a bit ahead (see the section ) I'd like to note that
at the beginning of many functions, there is a special sequence of instructions, called a prolog, which is also suitable
for identifying functions.

Cross-references Looking up the disassembled code, let's find all CALL instructions; the contents of
their operands are simply the required addresses of the function's beginning. The
addresses of the nonvirtual functions called by name are calculated during
compilation, and the operand of the CALL instruction in such cases represents an
immediate value. Thanks to this, the address of the function's beginning can be
discovered by simple analysis: Using a context search, we find all CALL substrings
and remember (or write down) immediate operands.

Let's consider the following example:

Listing 19: A Direct Function Call

func();

main()

{
int a;
func();
a=0x666;
func();

}

func()

{

int a;






Let's consider the following example:

Listing 21: Calling a Function Using a Pointer

func();

main()

{
int (a*) (;
a=func;

a();

Generally, the result of its compilation should be this:

Listing 22: The Disassembled Code for Calling a Function Using a Pointer

.text:00401000 push ebp

.text:00401001 mov  ebp, esp

.text:00401003 push ecx

.text:00401004 mov  dword ptr [ebp-4], 401012

.text:0040100B  call dword ptr [ebp-4]

.text:0040100B ; Here is the CALL instruction that implements
.text:0040100B ; an indirect call of the function

.text:0040100B ; at the address contained in the [EBP-4] cell.
.text:0040100B ; How can we know what is contained there?
.text:0040100B ; Let's scroll the disassembler screen up a little
.text:0040100B ; until we encounter the mov dword ptr [ebp-4], 401012 line.
.text:0040100B ; Aha! Then control is passed to the .text:401012 address.
.text:0040100B ; This is exactly the address of the function's beginning.
.text:0040100B ; Let's name the function and replace

.text:0040100B ; mov dword ptr [ebp-4], 401012 with

.text:0040100B ; mov dword ptr [ebp-4], offset Function_name.
.text:0040100E mov  esp, ebp

.text:00401010 pop ebp

.text:00401011  retn

Some quite rare programs use indirect calls of functions that involve a complex calculation of their addresses. Let's
consider the following example:

Listing 23: Calling a Function Using a Pointer and a Complex Calculation of the Target Address

func_1();
func_2();
func_3();

main ()

{
int x;
int a[3]=((int) func_1, (int) func_2, (int) func_3);
int (*f) 0

for (x=0; x<3; x++)

{

f=(int (*) () alx];
fQ);




Generally, the result of disassembling should look like this:

Listing 24: The Disassembled Code for Calling a Function Using a Pointer and a Complex Calculation of the Target
Address

.text:00401000 push ebp

.text:00401001 mov ebp, esp

.text:00401003 sub esp, 14h

.text:00401006 mov [ebp+0xC], offset sub_401046

.text:0040100D mov [ebp+0x8], offset sub_401058

.text:00401014 mov [ebp+0x4], offset sub_40106A

.text:0040101B mov [ebp+0x14], 0

.text:00401022 jmp short loc_40102D

.text:00401024 mov eax, [ebp+0x14]

.text:00401027 add eax, 1

.text:0040102A mov [ebp+0x14], eax

.text:0040102D cmp [ebp+0x14], 3

.text:00401031 jge short loc_401042

.text:00401033 mov ecx, [ebp+0x14]

.text:00401036 mov edx, [ebp+ecx*4+0xC]

.text:0040103A mov [ebp+0x10], edx

.text:0040103D call [ebp+0x10]

.text:0040103D ; This is the indirect function call. And what's
.text:0040103D ; in [EBP+0x10]? Having looked at the previous line,
.text:0040103D ; we see that we have the EDX value in [EBP+0x10].
.text:0040103D ; And what is the EDX value? Scrolling up for one line,
.text:0040103D ; we see that EDX is the same as the contents of
.text:0040103D ; the [EBP+ECX*4+0xC] location.

.text:0040103D ; What a mess! Besides the fact that we have
.text:0040103D ; to learn the contents of this cell, we also have
.text:0040103D ; to calculate its address! What is ECX equal to?
.text:0040103D ; The contents of [EBP+0x14], it seems.

.text:0040103D ; And what is the value of [EBP+0x14]?

.text:0040103D ; "Just a moment,” we murmur, scrolling up the
.text:0040103D ; disassembler window. Got it! In line 0x40102A,
.text:0040103D ; EAX's contents are loaded into it.

.text:0040103D ; It's certainly possible to waste a lot of time
.text:0040103D ; and effort reconstructing the entire key algorithm
.text:0040103D ; (especially now that we've come to the end of the analysis),
.text:0040103D ; but are there any guarantees that there will be no
.text:0040103D ; mistakes? It's much faster and more reliable to load
.text:0040103D ; the program being investigated into the debugger, set
.text:0040103D ; a breakpoint on line text:0040103D, and then, wait
.text:0040103D ; until the debugger window pops up and see what is there
.text:0040103D ; in the [EBP+0x10] cell. The debugger will pop up three
.text:0040103D ; times, and it will show a new address each time! Bear in
.text:0040103D ; mind that you will only notice this in the disassembler after
.text:0040103D ; you have completed the entire reconstruction of the
.text:0040103D ; algorithm. However, you shouldn't cherish any illusions
.text:0040103D ; about the power of the debugger. A program can
.text:0040103D ; call the same function one thousand times, and can
.text:0040103D ; call a different function the one thousand first time!
.text:0040103D ; The debugger cannot reveal this. The fact is that
.text:0040103D ; such a function call can occur at any moment - when
.text:0040103D ; a certain combination of the current time, the phase of the
.text:0040103D ; moon, and the data processed by the program occurs, for
.text:0040103D ; example. Certainly, we aren't going to run the program
.text:0040103D ; under the debugger for ages. The disassembler is
.text:0040103D ; quite another matter. A complete reconstruction
.text:0040103D ; of the algorithm will allow us to unequivocally
.text:0040103D ; and reliably trace all addresses of indirect calls.
.text:0040103D ; That's why the disassembler and the debugger















Listing 32: The Disassembled Code for an Inline Function

mov ebp, ds:SendMessageA

push esi

push edi

mov edi, ecx

push eax

push 666h

mov ecx, [edi+80h]
push 0Dh

push ecx

call ebp ; SendMessageA
lea esi, [esp+678h+var_668]
mov eax, offset aMygoodpassword ; "MyGoodPassword"

loc_0_4013FO0: ; CODE XREF: sub_0_4013C0+521
mov dl, [eax]
mov bl, [esi]
mov cl, dl
cmp dl, bl
jnz short loc_0_401418
test cl, cl

jz short loc_0_401414
mov dl, [eax+1]

mov bl, [esi+1]

mov cl, dl

cmp dl, bl

jnz short loc_0_401418
add eax, 2

add esi, 2

test cl, cl

jnz short loc_0_4013F0

loc_0_401414: : CODE XREF: sub_0_4013C0+3Ct j
Xor eax, eax
jmp short loc_0_40141D

loc_0_401418: ; CODE XREF: sub_0_4013C0+381 j
sbb eax, eax
sbb  eax, OFFFFFFFFh

loc_0_40141D: ; CODE XREF: sub_0_4013C0+561

test eax, eax

push 0

push 0

jz short loc_0_401460

To summarize, inline functions have neither their own prolog nor epilog. Their code and local variables (if any) are
completely inlined in a calling function — the resulting compilation looks exactly as if there were no function call at all.
The only catch is that inlining the function inevitably results in doubling its code in all places where it's used. This can
be revealed (although with difficulty), because the inline function, when it becomes a part of a calling function,
undergoes optimization in the context of the parent function, which results in significant variations in the code. Let's
consider this example:

Listing 33: The Pass-Through Optimization of an Inline Function

#include <stdio.h>
__inline int max(int a, int b)
{

if (a>b) return a;
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Start-up Functions

If we were to ask the first programmer who comes along: "With what function does the execution of a Windows
program start?" We would most likely hear the answer: "With WinMain" — which is a mistake. Actually, the first to
receive control is the start-up code, which is imperceptibly inserted by the compiler. Having executed the necessary
initialization procedures, at some point the start-up code calls WinMain. After the completion of WinMain, the start-up
code receives control again and performs a thorough deinitialization.

In most cases, the start-up code isn't of any interest to us; finding the WinMain function becomes the first task for the
code digger. If IDA Pro recognizes the compiler, it identifies WinMain automatically; otherwise, we have to use our own
brains and hands. The standard compiler usually contains the source codes of its libraries, including the start-up code
procedures. For example, in the Microsoft Visual C++ package, the start-up code is located in the CRT\SRC\crt0.c file
in the version for static linking, in the CRT\SRC\crtexe.c file in the version for dynamic linking (i.e., the library code isn't
linked to the file, but is called from a DLL), and in the CRT\SRC\wincmdin.c file in the version for console applications.
In the Borland C++ package, all files containing the start-up code are stored in a separate directory (Startup). In
particular, the start-up code for Windows applications is contained in the cOw.asm file. Now that | have explained
source codes a bit, it'll be much easier to understand the disassembler listing.

But what should you do if a compiler that is unknown or unavailable to you was used for the investigated program?
Before we begin a tiresome manual analysis, let's see what kind of prototype the WinMain function has:

int WINAPI WinMain(
HINSTANCE hinstance, /I Handle to current instance
HINSTANCE hPrevinstance, // Handle to previous instance
LPSTR IpCmdLine, // Pointer to command line
int nCmdShow /I Show state of window

);

First, four arguments (see the "i:unction Arqumentsl“ section) are quite enough. In most cases, WinMain appears to be
the function of the start-up code that is richest in arguments. Second, the last argument placed in the stack —
hinstance — is most often calculated on the fly by calling the GetModuleHandleA function. For example, having met a
construction of the type CALL GetModuleHandleA, we can assert with a high degree of confidence that the following
function is nothing else than WinMain. Finally, the call to WinMain is usually located near the end of the code of the
start-up function. It's usually followed by no more than two or three functions such as exit or XcptFilter.

Let's consider the following code fragment. Our attention is arrested by the multitude of PUSH instructions pushing the
arguments into the stack, the last one of which passes the result of executing GetModuleHandleA. This means we are
dealing with nothing else than the call to WinMain (and IDA confirms that this is indeed the case).

Listing 35: Identifying the WinMain Function by the Arguments Passed to It

.text:00401804 push eax

.text:00401805 push esi

.text:00401806 push ebx

.text:00401807 push ebx

.text:00401808 call ds:GetModuleHandleA
.text:0040180E push eax

.text:0040180F call _WinMain@16
.text:00401814 mov [ebp+var_68], eax
.text:00401817 push eax

.text:00401818 call ds:exit

However, things are not always that simple. Many developers modify the source start-up code, sometimes
considerably, when it is available. As a result, executing a program may start not with WinMain, but with any other
function. In addition, the start-up code can contain an operation critical for understanding the algorithm (a decryptor of
the main code, for example). Therefore, it's always necessary to skim through the start-up code to figure out if it



contains something unusual.

Matters are similar with dynamic link libraries (.dll). Their execution doesn't start with the DIlMain function (if there's one
in the DLL at all), but rather with __DIIMainCRTStartup by default. However, developers sometimes change the defaults,
specifying the start-up function they need using the /ENTRY key of the linker. Strictly speaking, DIIMain is not a start-up
function — it's called not only when loading DLL, but also when unloading and when the process that has linked the
function creates/terminates a new thread. Having received messages about these events, the developer can
undertake some actions (for example, prepare code for working in a multithreaded environment). But is this significant
for the analysis of the program? Most often, the dynamic link library must not be analyzed as a whole; rather, the
operation of some functions exported by it must be investigated. If DIIMain performs any operations — say, initializes
variables — then other functions somehow related to these variables should contain direct references to them that lead
straight to DIIMain. Thus, we don't need to manually search for DIIMain — it'll come to light by itself. It would be nice if
this were always the case! But life is more complicated than any rules. What if there is a certain destructive code in
DlIMain, or if the library, besides its main activity, spies on threads to trace their appearance? Then, we can't do without
a direct analysis of its code.

It's more difficult to reveal DlIMain than WinMain; if IDA doesn't find it, the situation is hopeless. First, the prototype of
DlIMain is relatively unsophisticated and doesn't contain anything special:

BOOL WINAPI DIIMain(
HINSTANCE hinstDLL, // Handle to DLL module
DWORD fdwReason, // Reason for calling function
LPVOID IpvReserved // Reserved

);

Second, its call comes from the depth of a rather impressive function, __DIIMainCRTStartup, and there's no way to
easily make sure that it's exactly that CALL we need. There are some catches, however. When the initialization fails,
DlIMain returns FALSE. The code of _ DIIMainCRTStartup checks this value, and jumps are possible even to the end of
the function. The body of the start-up function contains few of such branches, and only one of them is usually
connected to the function accepting three arguments.

Listing 36: Identifying DIIMain by the Failed Initialization Code

.text:1000121C push edi

.text:1000121D push esi

.text:1000121E push ebx

.text:1000121F call _DlMain@12
.text:10001224 cmp esi, 1

.text:10001227 mov  [ebp+arg_4], eax
.text:1000122A jnz  short loc_0_10001238
.text:1000122C test eax, eax
.text:1000122E jnz  short loc_0_10001267

Having scrolled the window a bit upward, it's easy to make sure that the EDI, ESI, and EBX registers contain
IpvReserved, fdwReason, and hinstDLL, respectively. Hence, we're dealing with the DlIMain function. (The source code of
__DIIMainCRTStartup is contained in the dlicrtO.c file, which | strongly recommend that you study.)

At last, we've reached the main function of console Windows applications. As always, the execution of the program
does not start with it, but rather with the mainCRTStartup function that passes control to main only after initializing the
heap, and the input/output system that prepares the command line arguments. The main function accepts only two
arguments: int main(int argc, char **argv). This is not enough to distinguish it from other functions. However, there is one
fact that proves to be helpful — that the keys of the command line are accessible not only through arguments, but
also through global variables — __argc and __argv. Therefore, the call to main usually looks like this:

Listing 37: Identifying the main Function

.text:00401293 push dword_0_407D14
.text:00401299 push dword_0_407D10
.text:0040129F call _main

.text:0040129F ; Both arguments of the function are
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Virtual Functions

By definition, a virtual function is defined at the run time of a program. When a virtual function is called, the executable
code should correspond to the dynamic type of the object from which the function is called. The address of a virtual
function can't be determined at compile time — we have to do this just before we call it. Therefore, a virtual function
always answers an indirect call. (The only exception is a virtual function of a static object.)

While nonvirtual C++ functions are called in exactly the same way as normal C functions, virtual functions are called in
a substantially different way. The method of calling isn't standardized,; it depends on the implementation of a particular
compiler. But the references to all virtual functions are usually placed into a special array — a virtual table (VTBL).
The virtual table pointer (VPTR) is placed in each instance of the object that uses at least one virtual function.
Nonderived objects, or objects with a single inheritance, have no more than one VPTR, while objects with multiple
inheritance can have several VPTRs.

Virtual functions usually are called indirectly through the pointer to the virtual table — for example, CALL [EBX+0x10],
where EBX is the register containing the offset of the virtual table in memory, and 0x10 is the offset of the pointer to the
virtual function inside the virtual table. The only exception is a virtual function of a static object.

The analysis of virtual function calls involves a number of complications, the most unpleasant of which is the necessity
of backtracing the code to keep track of the value of the register used for indirect addressing. It's good to initialize this
by an immediate value of the type MOV EBX, offset VTBL near the place where it's used. However, the pointer to VTBL
is most often passed to a function as an implicit argument, or, even worse, the same register pointer is used for calling
several different virtual functions. Then an uncertainty arises: Exactly which value (values) does it have in the given
location of the program?

Let's analyze the following example (first recalling that the virtual function of the derived class is invoked for objects of
the derived class, even if it is called using a pointer or reference to the base class):

Listing 38: Calling a Virtual Function

#include <stdio.h>

class Base {
public:
virtual void demo(void)

{
printf("BASE\n");

virtual void demo_2(void)
{
printf("BASE DEMO 2\n");
h
void demo_3(void)
{
printf("Nonvirtual BASE DEMO 3\n");

h
class Derived: public Base{
public:

virtual void demo(void)

{
printf("DERIVED\n");

virtual void demo_2(void)







jmp short loc_0_40101B

loc_0_401019: ; CODE XREF: sub_0_401000+D1 j
Xor esi, esi
; This overwrites the pointer to the object instance with NULL.
; (This branch receives control only if there is a failure
; in allocating memory for the object.)
; The null pointer will evoke the structural exception handler
; at the first attempt of calling.

loc_0_40101B: ; CODE XREF: sub_0_401000+171 j
mov eax, [esi] ; EAX =*BASE_VTBL == *BASE_DEMO

; Here, the pointer to the virtual table of the BASE class is

; placed in EAX, keeping in mind that the pointer to the virtual,
; table also is the pointer to the first element of this table.

; The first element of the virtual table, in turn, contains

; the pointer to the first virtual function

; (in the declaration order) of the class.

mov ecx, esi ; ECX =this

; Now, the pointer to the instance of the object is written into
; ECX, passing an implicit argument - the this pointer -

; to the called function.

; (See the "Function Arguments" section.)

call dword ptr [eax] ; CALL BASE_DEMO

; This is what we came for - the call of

; the virtual function! To understand which function is called,

; we should know the value of the EAX register.

; Scrolling the disassembler window upward, we see that EAX points
; to BASE_VTBL, and the first element of BASE_VTBL (see below)

; points to the BASE_DEMO function.

; Therefore,

; this code calls the BASE_DEMO function, and

; the BASE_DEMO function is a virtual function.

mov edx, [esi] ; EDX =*BASE_DEMO
; The pointer to the first element of the virtual table
; of the BASE class is placed into EDX.

mov ecx, esi ; ECX = this
; The pointer to the object instance is placed into ECX.

; This is an impligi the function - the this
; pointer. (See "[The this Pointel|" section.)

call dword ptr [edx+4] ; CALL [BASE_VTBL+4] (BASE_DEMO_2)
; Here's one more call of a virtual function! To understand

; which function is called, we should know the contents of the

; EDX register. Scrolling the screen window upward, we see that
; it points to BASE_VTBL,; thus, EDX+4 points to the second

; element of the virtual table of the BASE class, which, in turn,

; points to the BASE_DEMO_2 function.

push offset aNonVirtualBase ; "Nonvirtual BASE DEMO 3\n"

call printf

; Here's a call of a nonvirtual function. Pay attention - it's

; implemented in the same way as the call of a regular C function.
; Note that this is an inlined function; that is, it's declared



; directly in the class, and instead of calling it,
; code is inserted.

push 4

call ??22@YAPAXI@Z ; operator new(uint)

; The calls of DERIVED class functions continue.

; In general, we only needed the DERIVED class here
; to show how virtual tables are arranged.

add esp, 8 ; Clearing the stack after printf and new
test eax, eax

jz shortloc_0_40104A ; Memory allocation error

mov dword ptr [eax], offset DERIVED_VTBL

mov  esi, eax ; ESI == *DERIVED_VTBL

jmp shortloc_0_40104C

loc_0_40104A: ; CODE XREF: sub_0_401000+3E1]
Xor esi, esi
loc_0_40104C: ; CODE XREF: sub_0_401000+481 j

mov  eax, [esi]= *DERIVED_VTBL

mov  ecx, esi ; ECX = this

call dword ptr [eax] ; CALL [DERIVED_VTBL] (DERIVED_DEMO)
mov  edx, [esi] ; EDX =*DERIVED_VTBL

mov  ecx, esi ; ECX=this

call dword ptr [edx+4]  ; CALL [DERIVED_VTBL+4] (DERIVED_DEMO_2)

push offset aNonVirtualBase ; "Nonvirtual BASE DEMO 3\n"
call printf

; Note that the called BASE_DEMO function is of the base class,
; not of the derived one!

add esp, 4
pop esi
retn

main endp

BASE_DEMO proc near ; DATA XREF: .rdata:004050B0! o
push offset aBase ; "BASE\n"

call printf

pop ecx

retn

BASE_DEMO endp

BASE_DEMO_2 proc near ; DATA XREF: .rdata:004050B4 ! o
push offset aBaseDemo2 ; "BASE DEMO 2\n"

call printf

pop ecx

retn

BASE_DEMO_2 endp

DERIVED_DEMO proc near ; DATA XREF: .rdata:004050A8! o
push offset aDerived ; "DERIVED\n"

call printf

pop ecx

retn

DERIVED_DEMO endp

DERIVED_DEMO_2 proc near ; DATA XREF: .rdata:004050AC! o
push offset aDerivedDemo2 ; "DERIVED DEMO 2\n"
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add esp, 4
; Memory is allocated for the instance of object B.

test eax, eax

jz shortloc_0_ 401037

mov  ecx, eax ; ECX = this

call Get_B_VTBL : b[0] = *B_VTBL

; The pointer to the virtual table of the object
; is placed in its instance.

mov  esi, eax ; ESI =*b

jmp shortloc_0_401039

loc_0_401037: ; CODE XREF: main+2At j
Xor esi, esi

loc_0_401039: ; CODE XREF: main+351 j
push 8
call ??2@YAPAXI@Z ; operator new(uint)
add esp, 4

; Memory is allocated for the instance of object C.
test eax, eax

jz shortloc_0_401052

mov  ecx, eax ; ECX = this

call GET_C_VTBLs ; ret: EAX=*c

; The pointer to the virtual table of the object

; Is placed in its instance.

; Attention: Look into the GET_C_VTBLSs function.

mov  edi, eax ; EDI =*c
jmp  short loc_0_401054

loc_0_401052: ; CODE XREF: main+451 j
xor edi, edi

loc_0_401054: ; CODE XREF: main+501 j
mov eax, [ebx] ; EAX = a[0] =*A_VTBL
mov  ecx, ebx  ECX =*a
call dword ptr [eax] ; CALL [A_VTBL] (A_F)
mov  edx, [esi] ; EDX = b[0]
mov  ecx, esi  ECX =*b
call dword ptr [edx] ; CALL [B_VTBL] (B_F)
mov  eax, [esi] ; EAX =b[0] = B_VTBL
mov  ecx, esi  ECX =*b
call dword ptr [eax+4] ; CALL [B_VTBL+4] (B_G)
mov edx, [edi] ; EDX =c[0] = C_VTBL
mov  ecx, edi ; ECX =*c

call dword ptr [edx] ; CALL [C_VTBL] (C_F)

; Attention: The nonvirtual function is called as a virtual one!
pop edi

pop esi

pop ebx

retn

main endp

GET_C_VTBLSs proc near ; CODE XREF: main+491 p
push esi ;ESI=*b
push edi ; ECX =*c
mov  esi, ecx ; ESI =*c
call Get_ A VTBL ; c[0]=*A_VTBL
; The pointer to the virtual table of the A class



; is placed in the instance of object C.

lea edi, [esi+4] ; EDI = *c[4]
mov  ecx, edi ;ECX=*_C_F
call Get_ B VTBL ; c[4]=*B_VTBL

; The pointer to the virtual table of class B is added

; in the instance of object C - that is, object C now contains

; two pointers to two virtual tables of the base class.

; Let's see how the compiler will cope with the name conflict.

mov dword ptr [edi], offset C_VTBL_FORM_B ; c[4]=*_C_VTBL
; The pointer to the virtual table of class B is replaced

; with the pointer to the virtual table of class C.

; (See the comments directly in the table.)

mov dword ptr [esi], offset C_VTBL ; c[0]=C_VTBL

; Once more - now the pointer to the virtual table of class A
; is replaced with the pointer to the virtual table of class C.

; What a poorly written code!

; It could easily have been cut down at compile time!

mov  eax, esi ; EAX = *c
pop edi

pop esi

retn

GET_C_VTBLs endp

Get_A_VTBL proc near ; CODE XREF: main+131 p GET_C_VTBLs+41p
mov  eax, ecx
mov dword ptr [eax], offset A_VTBL
; The pointer to the virtual table of class B
; Is placed in the instance of the object.

retn

Get_A_VTBL endp

A_Fproc near ; DATA XREF: .rdata:004050A81 0
; This is the virtual function f() of class A.

push offset aA_f ;"A_F\n"
call printf
pop ecx
retn
AF endp
Get_B_VTBL proc near ; CODE XREF: main+2Et p GET_C_VTBLS+E1 p

mov  eax, ecx
mov dword ptr [eax], offset B_VTBL

; The pointer to the virtual table of class B
; is placed in the instance of the object.

retn
Get_B_VTBL endp

B_F proc near ; DATA XREF: .rdata:004050AC 1 o
; This is the virtual function f() of class B.
push offset aB_f ; "B_F\n"

call printf



pop ecx
retn

B F endp

B_G proc near ; DATA XREF: .rdata:004050B01 o
; This is the virtual function g() of class B.

push offsetaB_g ; "B_G\n"
call printf
pop ecx
retn
B_G endp
C_F proc near ; CODE XREF: _C_F+31]j

; The nonvirtual function f() of class C looks like and is called
; as a virtual one!

push offset aC_f ;"C_F\n"
call printf
pop ecx
retn
C_F endp
_CF proc near ; DATA XREF: .rdata:004050B81 o
sub ecx, 4
jmp C_F

; Look what a strange function this is! This is exactly the same

; thunk of which we were speaking a moment ago. First, it's never
; called (although it would have been called if we had decided

; to address the replaced virtual function, and if

; the this pointer pointed "right past" this function).

; Second, it's a thunk to the C_F function.

; What is ECX decreased for? The compiler has placed the this pointer,
; which, before decreasing, tried to point to the entire object

; inherited from class B. Upon decreasing, it started pointing

; to the previous sub-object - that is, to the contents

; of the f() function called by JMP.

_CF endp

A_VTBL dd offset A_F ; DATA XREF: Get_A_VTBL+2t1 0
; This is the virtual table of the A class.

B_VTBL dd offset B_F ; DATA XREF: Get_B_VTBL+2t 0
dd offset B_G

; This is the virtual table of class B, which contains the pointers

; to two virtual functions.

C_VTBL dd offset C_F ; DATA XREF: GET_C_VTBLs+191 0
; The virtual table of class C contains the pointer

; to the function f() which isn't explicitly declared

; virtual, but is virtual by default.

C_VTBL_FORM_B dd offset _C_F ; DATA XREF: GET_C_VTBLs+13t 0
dd offset B_G

; The virtual table of class C is copied by the compiler from

; class B. It originally consisted of two pointers to the f() and g()

; functions, but the compiler resolved the conflict of names

; at compile time, and replaced the pointer to B::f()









lea ecx, [ebp+var_4] ;base
; The this pointer is prepared
; (in case it will be needed for the function).

call BASE_DEMO

; A direct call of the function! Along with its presence
; in the virtual table, this is the evidence of the static
; character of the declaration of the object instance.

lea ecx, [ebp+var_4] ;base
; A new this pointer is prepared to the base instance.

call BASE_DEMO_2

; A direct call of the function. Is it there in the virtual table?
; Yes, it is! This means that it's a virtual function,

; and the instance of the object is declared static.

lea ecx, [ebp+var_4] ;base
; The this pointer is prepared for the nonvirtual function demo_3.

call BASE_DEMO_3
; This function isn't present in the virtual table
; (see the virtual table), hence, it's not a virtual one.

lea ecx, [ebp+var_8] ;derived
call GetDERIVED_VTBL ;d[0]=*DERIVED_VTBL

lea ecx, [ebp+var_8] ;derived
call DERIVED_DEMO
; same as above...

lea ecx, [ebp+var_8] ;derived
call DERIVED_DEMO 2
; same as above...

lea ecx, [ebp+var_8] ;derived

call BASE_DEMO_3_

; Attention: The this pointer points to the DERIVED object
; when the function of the BASE object is called!

; Hence, the BASE function is a derived one.

mov esp, ebp
pop ebp
retn

main endp

BASE_DEMO proc near ; CODE XREF: main+111 p
; This is the demo function of the BASE class.

push offset aBase ; "BASE\n"
call printf

pop ecx

retn

BASE_DEMO endp

BASE_DEMO_2 proc near ; CODE XREF: main+191 p
; This is the demo_2 function of the BASE class.

push offset aBaseDemo2 ;"BASE DEMO 2\n"
call printf
pop ecx



retn
BASE_DEMO_2 endp

BASE_DEMO_3 proc near ; CODE XREF: main+211 p
; This is the demo_3 function of the BASE class.

push offset aNonVirtualBase ; "Nonvirtual BASE DEMO 3\n"
call printf
pop ecx
retn
BASE_DEMO_3 endp

DERIVED_DEMO proc near ; CODE XREF: main+311 p
; This is the demo function of the DERIVED class.

push offset aDerived ;"DERIVED\n"
call printf
pop ecx
retn
DERIVED_DEMO endp

DERIVED_DEMO_2proc near ; CODE XREF: main+391 p
; This is the demo_2 function of the DERIVED class.

push offset aDerivedDemo2 ; "DERIVED DEMO 2\n"
call printf
pop ecx
retn
DERIVED_DEMO_2endp

BASE_DEMO_3_ proc near ; CODE XREF: main+411 p
; This is the demo_3 function of the DERIVED class.

; Attention: The demo_3 function occurs in the program twice.
; The first time, it appeared in the object of the BASE class,

; and the second time, it appeared in the DERIVED object.

; The DERIVED object inherited it from the BASE class,

; and has made a copy of it.

; This is kind of silly, isn't it?

; It'd be better off using the original...

; But you see, this simplifies the analysis

; of the program!

push offset aNonVirtualDeri ; "Nonvirtual DERIVED DEMO 3\n"
call printf
pop ecx
retn
BASE_DEMO_3_ endp

GetBASE_VTBL proc near ; CODE XREF: main+91 p
; In the instance of the BASE object,
; the offset of its virtual table is written.

mov eax, ecx
mov dword ptr [eax], offset BASE_VTBL
retn

GetBASE_VTBL endp

GetDERIVED_VTBL proc near ; CODE XREF: main+291 p
; In the instance of the DERIVED object,
; the offset of its virtual table is written.









We've already discussed identifying derived virtual functions. They are called in two stages — the offset of the virtual
table of the base class is written in the object instance, then it's replaced with the offset of the virtual table of the
derived class. Even though the compiler optimizes the code, the redundancy remainder will be greater than necessary
for distinguishing derived functions from other ones.

Identifying virtual tables Now, having thoroughly mastered virtual tables and functions, we'll consider a very insidious
question: Is any array of pointers to functions a virtual table? Certainly not! Indirectly calling a function through a

pointer is often used by programmers in practice. An array of pointers to functions... hmm. Well, it's certainly not
typical, but it happens, too!

Let's consider the following example — it's a somewhat ugly and artificial, but to show a situation where a pointer array
is vitally necessary, we'd have to write hundreds of lines of code.

Listing 50: An Imitation of a Virtual Table

#include <stdio.h>

void demo_1(void)

{
printf("Demo 1\n");

}

void demo_2(void)

{
printf("Demo 2\n");

}

void call_demo (void **x)

{
((void (*) (void)) x[01)();
((void (*) (void)) x[1])();

}

main()

{
static void* x[2] =
{ (void*) demo_1,(void*) demo_2};
/I Attention: If you initialize an array
/'in the course of the program (i.e.,
/I x[0] = (void *) demo_1, ...), the compiler will generate
/I an adequate code that writes the functions' offsets
/I at run time, which is absolutely unlike a virtual table!
/I On the contrary, initializing an array when it's declared
/I causes ready pointers to be placed in the data segment,
/I which resembles a true virtual table.
/I (By the way, this also helps save CPU clocks ticks.)
call_demo(&x[0]);

}

Now, see if you can distinguish a handmade table from a true one.

Listing 51: Distinguishing an Imitation from a True Virtual Table

main proc near ; CODE XREF: start+AF! p
push offset Like_VTBL
call demo_call
; A pointer to something very similar to a virtual table is passed
; to the function. But having grown wise with experience, we easily
; discover this crude falsification. First, the pointers to VBTL aren't
; passed so simply. (The code used for this isn't that basic.)






Conclusion In general, working with virtual functions involves many redundancies and "brakes", and the analysis of
them is very labor-consuming. We permanently have to keep many pointers in mind and remember where each of
them points. Still, code diggers seldom face insoluble problems.

[ rrevious | nexr



Constructors and Destructors

Why is it difficult to identify the constructor? First, in most cases, the constructor is called automatically when a new
instance of the object is created. This makes it the first function to be called — but only if it is called. The constructor is
optional; it may be present in an object, or it may not. Therefore, the function called first isn't always a constructor!

Second, by looking at the description of the C++ language, we learn that the constructor doesn't return a value. This is
unusual in regular functions, but this feature isn't unique and can't be used to reliably identify the constructor. What
should we do then?

According to the standard, the constructor shouldn't throw exceptions automatically, even if the memory allocation for
the object fails. Most compilers implement this requirement by placing a check for a null pointer before evoking the
constructor. The control is passed to the constructor only if memory for the object has been allocated successfully.

In contrast, the other functions of the object are always called, even if the attempt to allocate memory was
unsuccessful. To be precise, the other functions try to be called. If a memory allocation error occurs, a null pointer is
returned. This causes an exception to be thrown when the first call is attempted for these functions. The control is then
passed to the handler of the corresponding exception.

Thus, the function enclosed only by checks for a null pointer is a constructor. Theoretically, a similar check can be
used when other functions are called, but | have not come across such functions yet.

The destructor, like the constructor, is optional; the object's function called last must not necessarily be a destructor.
Nevertheless, it's simple to distinguish a destructor from any other function — it's called only if memory has been
successfully allocated and the object has been created. This is a documented property of the language; it must be
implemented by all compilers. Just as with the constructor, a "ring" of null pointers is placed in the code, but no
confusion arises because the constructor is called first, and the destructor last.

An object consisting entirely of one constructor or one destructor is a special case. How can we figure out what we're
dealing with? The call of a constructor is practically always followed by a code that resets this to zero if memory
allocation was unsuccessful; there's nothing of the kind for a destructor. What's more, the destructor is rarely called
directly from the parent procedure. Instead, the destructor is called from a function wrapper, along with the delete
operator that releases the memory acquired by the object. So, it's quite possible to distinguish a constructor from a
destructor!

To better understand these distinctions, let's consider the following example:

Listing 52: An Example of a Constructor and a Destructor

#include <stdio.h>

class MyClass{

public:
MyClass(void);
void demo(void);
~MyClass(void);
h
MyClass::MyClass()
{
printf("Constructor\n");
}

MyClass::~MyClass()
{

printf("Destructor\n®);






jz shortloc_0_40105A

; A check for whether the allocation of memory for the object

; Is successful. Pay attention to the jump destination.

; The destination is XOR ESI, ESI, which resets the poiner to the object.
; Attempting to use the null pointer causes an exception

; to be thrown, but the constructor should not throw an exception,

; even though allocating memory for the object is unsuccessful.

; Therefore, the constructor gets control

; only if the memory allocation is a success.

; Hence, the function preceding XOR ESI, ESI is just a constructor!

mov  ecx, eax
; The this pointer is prepared.

call Constructor
; This function is a constructor, since it's called
; only if the memory allocation is a success.

mov  esi, eax
jmp short loc_0_40105C

loc_0_40105A: ; CODE XREF: main+Dl j
Xor esi, esi
; The pointer to the object is reset
; to cause an exception when attempting to use the pointer.
; Attention: The constructor never throws an exception,
; therefore, the function below definitely isn't a constructor.

loc_0_40105C: ; CODE XREF: main+181j
mov  ecx, esi
; The this pointer is prepared.

call demo
; An ordinary function of the object is called.

test esi, esi

jz shortloc_0_401070

; Checking the this pointer for NULL. The destructor is called
; only if memory for the object has been allocated.

; (If not, we likely have nothing to release.)

; Thus, the following function is a destructor and nothing else.

push 1
; The number of bytes to release. (This is necessary for delete.)

mov  ecx, esi
; Preparing the this pointer.

call __ destructor
; The destructor is called.

loc_0_401070: ; CODE XREF: main+251 j
pop esi
retn

main endp

__destructor proc near ; CODE XREF: main+2B1 p

; This is a destructor function. Notice that the destructor
; Is usually called from the same function as delete.

; (This is not always the case.)
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Objects, Structures, and Arrays

The internal representation of objects is similar to the representation of structures in the C language. (After all, objects
are structures, too.) We'll look at how to identify both of them.

Structures are popular among programmers. They allow programmers to unite related data under one roof, making the
program listing more readable and understandable. Accordingly, identifying structures during disassembling facilitates
the analysis of code. To the great regret of code diggers, structures exist only in the source code of a program. They
almost completely "dissolve" at compile time and become indistinguishable from ordinary variables that are not related
to one another in any way.

Let's consider the following example:

Listing 59: Eliminating Structures at Compile Time

#include <stdio.h>
#include <string.h>

struct zzz

{
char s0[16];
int a;
float f;

h

func(struct zzz y)

Il Clearly, it's better to avoid passing a structure by value.
I/l Here, this is done deliberately to demonstrate

/I the hidden creation of a local variable.

{
printf("%s %x %f\n", &y.s0[0], y.a, y.f);
}
main()
{
struct zzz y;
strcpy(&y.s0[0], "Hello, Sailor!");
y.a = Ox666;
y.f=6.6;
func(y);
}

In general, the disassembled listing of the compiled version of this program should look like this:

Listing 60: The Disassembled Code Eliminating Structures at Compile Time

main proc near ; CODE XREF: start+AF ! p
var_18 = byte ptr -18h

var_8 = dword ptr -8

var_4 = dword ptr -4

; The members of the structure are indistinguishable
; from ordinary local variables.

push ebp

mov ebp, esp

sub esp, 18h

; A place is allocated on the stack.












What's even more unpleasant is that the C and C++ languages allow (if not provoke) the explicit conversion of types,
and... oh, wait. During disassembling, it seems unlikely that we can figure out whether we're dealing with data of
different types united under one roof (a structure), or with a handmade conversion applied to an array. Strictly
speaking, such conversions turn an array into a structure. (An array is homogeneous by definition; it can't store data of
different types.)

Let's modify the previous example so the pointer is passed to a function, not to the structure, and see what kind of
code the compiler generates:

Listing 63: Passing a Structure Pointer to a Function

funct proc near ; CODE XREF: sub_0_401029+291{ p
var_8 = gword ptr -8
arg_0 = dword ptr 8

; The function takes only one argument!

push ebp

mov ebp, esp

mov eax, [ebp+arg_0]

; This is loading the argument passed to the function in EAX.
fld dword ptr [eax+14h]

; The floating-point value, located at the offset 0x14

; relative to the EAX pointer, is loaded to the FPU stack.

; Therefore, first of all, EAX (the argument passed to the
; function) is the pointer. Second, it's not a simple pointer,
; but a base one that is used for accessing elements

; of a structure or an array. Let's recall the type

; of the first element (a floating-point value),

; and continue our analysis.

sub esp, 8
; Eight bytes are allocated for local variables.

fstp [esp+8+var_8]
; This is storing the real value that we've just read
; in a local variable - var_8.

mov  ecx, [ebp+arg_0]
; The value of the pointer passed to the function is loaded in ECX.

mov  edx, [ecx+10h]

; The value located at the offset 0x10 is loaded in EDX.
; Aha! It's certainly not a floating-point value.

; Hence, we're dealing with a structure.

push edx
; The previously read value is pushed to the stack.

mov eax, [ebp+arg_0]

push eax

; We obtain a pointer to the structure (that is, to its first member)

; and push it to the stack. Since the nearest element is located

; at the offset 0x10, the first element of the structure is likely

; to occupy all 0x10 of these bytes, although this isn't necessarily
; the case. Possibly, the rest members of the structure simply are
; not used. We can figure out how matters actually do stand

; by having a look at the calling (parent) function that

; initialized this structure. We can, however, approximately

; reconstruct its view even without doing this.

; struct xxx{



; char x[0x10] || int x[4] || ___int16[8] || __int64[2];
yinty;
; float z;

v}

push offset aSXF ; "%s %x %f\n"

; The format specification string allows us

; to ascertain the data types.

; The first element is undoubtedly char x[x010],

; since it's output as a string.

; Hence, our preliminary assumption that this is a structure is correct!

call printf
add esp, 14h
pop ebp
retn
funct endp
main proc near ; CODE XREF: start+AF! p
var_18 = byte ptr -18h
var_8 = dword ptr -8
var_4 = dword ptr -4

; At first glance, we seem to be dealing
; with several local variables.

push ebp
mov ebp, esp
sub esp, 18h

; The frame of the stack is open.

push offset aHelloSailor; "Hello, Sailor!"

lea eax, [ebp+var_18]

push eax

call unknown_libname_1

; unknown_libname_1 is a strcpy, and we can figure this out without
; even analyzing its code. The function takes two arguments -

; the pointer of 0x10 bytes to the local buffer (the size of 0x10

; Is obtained by subtracting the offset of the nearest variable

; from the offset of this variable relative to the frame of the stack).
; strcmp has exactly the same prototype, but this can't be strcmp,
; since the local buffer isn't initialized.

; It can only be a receiving buffer.

add esp, 8
; The arguments are popped off the stack.

mov  [ebp+var_8], 666h
; Initializing a local variable var_8 of DWORD type.

mov  [ebp+var_4], 40D33333h

; This is initializing a local variable var_4 of type... no,

; not of DWORD type (despite the fact that it looks like DWORD).
; Having analyzed how this variable is used

; in the func function to which it's passed, we recognize

; a floating-point value with a size of 4 bytes in it.

; Therefore, it's a floating-point number.

; (See the "Function Arguments" section

; for more details.)

lea ecx, [ebp+var_18]
push ecx






Pointer to VTBL

A

Figure 13: A representation of an object in memory

The code digger has to solve several problems: How can we distinguish objects from simple structures? How can we
find the size of objects? How can we determine which function belongs to which object? Let's answer the questions in
the order they are posed.

In general, it's impossible to distinguish an object from a structure; an object is just a structure that has private
members by default. To declare objects, we can use the struct or the class keyword. For classes with unprotected
members, it's preferable to use struct because members of a structure are public by default. Compare these two
examples:

Listing 65: Declaring Objects Using the struct or the class Keyword

struct MyClass{ class MyClass{
void demo(void); void demo_private(void);
int x; inty;
private: public:
void demo_private(void); void demo(void);
inty; int x;
I K

The listings differ in their syntax, but the code generated by the compiler will be identical. Therefore, it's best to learn
to distinguish objects from structures as soon as possible.

Let's regard structures that contain at least one function as objects. How can we determine which function belongs to
which object? This is relatively simple with virtual functions: They're called indirectly through the pointer to the virtual
table. The compiler places this pointer in each object instance pertaining to that virtual function. Nonvirtual functions
are called using their actual addresses, just like normal functions that don't belong to any object. Is the situation
hopeless? By no means. Each function of an object is passed an implicit argument — the this pointer, which refers to
the object instance pertaining to that function. The object instance isn't the object, but something related to it.
Therefore, reconstructing the initial structure of objects in a disassembled program seems feasible.

The size of objects is determined using the same this pointers — as the difference between adjacent pointers (for
objects located on the stack or in the data segment). If object instances are created using the new operator, the code
contains the call for the new function that takes as an argument the number of bytes to be allocated. This number is
exactly the size of the object.

Well, that's pretty much all. We just need to add that when many compilers create an object instance that contains
neither data nor virtual functions, they allocate a minimum amount of memory (usually, 1 byte) for the object instance,
even though they don't use it. Why do they do this? Memory isn't made of rubber, and °you can't allocate 1 byte on the
heap—the granulation causes a considerable piece, the size of which varies from 4 bytes to 4 KB depending on the
heap implementation, to be eaten off!
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The memory is allocated because the compiler vitally needs to define the this pointer. Alas, this can't be a null pointer,
since an exception would be thrown during the first attempt of calling. In addition, the delete operator should delete
something, but first, this "something” should be allocated...

Arrrgh! Although C++ developers tell us over and over that their language is no less efficient than pure C, all
implementations of C++ compilers that | know generate very buggy and sluggish code. Well, all this is just talk; let's
proceed to the consideration of particular examples:

Listing 66: Identifying an Object and Its Structure

#include <stdio.h>

class MyClass{

public:
void demo(void);
int x;

private:
demo_private(void);
inty;

h

void MyClass: :demo_private(void)

{
printf ("Private\n");

}

void MyClass: :demo(void)

{
printf("MyClass\n");
this->demo_private();
this->y=0x666;

}

main()

{
MyClass *zzz = new MyClass;
zzz->demo();
222->X=0X777,

}

In general, the disassembled code of the compiled version of this program should look like this:

Listing 67: The Disassembled Code for Identifying an Object and Its Structure

main proc near ; CODE XREF: start+AF! p
push esi
push 8
call ??22@YAPAXI@Z ; operator new(unit)

; Using the new operator, we allocate 8 bytes for the instance of
; some object. Generally, it's not very certain at all that memory
; is allocated for an object (there might be something like

; char *x = new char[8]), so let's not, consider this assertion

; as dogma, and accept it as a working hypothesis.

; Further analysis will show how matters actually stand.

mov  esi, eax
add esp, 4

mov  ecx, esi
; Athis pointer is prepared and passed
; to the function through the register. Hence, ECX is



; a pointer to the instance of an object! (See
; "The this Pointer" section for more detail.)

call demo

; We've at last gotten to the call of the demo function!

; It's not yet clear what this function does (for clarity,

; a character name is assigned to it), but we know that it belongs
; to the object instance to which ECX points. Let's name

; this instance a. Furthermore, since the function that calls

; demo (that is, the function we're in now) doesn't belong to a

; (awas created by this very function - the instance of

; the object couldn't just "pull itself out by the hair"),

; the demo function is a public one. A good start, isn't it?

mov dword ptr [esi], 777h
; Well, well... we remember that ESI points to the object instance,
; and then we find out that there's one more public member
; in the object - a variable of type int.
; According to preliminary conclusions, the object looked like this:
; class myclass{
; public:
; void demo(void); // Note that void is used because the function
; Il neither receives nor returns anything.
; int x;
i}
pop esi
retn
main endp

demo proc near ; CODE XREF: main+F1 p

; now we're in the demo function, which is a member of object A.
push esi
mov  esi, ecx
; The this pointer passed to the function is loaded in ECX.

push offset aMyclass ; "MyClass\n"
call printf
add esp, 4

; A'line is displayed. This isn't interesting, but later...

mov  ecx, esi

call demo_private

; Oops! That's it! One more function is called!

; Judging from this, this is a function of our object,

; and it probably has the private attribute,

; since it's only called from the function of the very object.

mov dword ptr [esi+4], 666h

; Well, there's one more variable in the object, and it's probably
; private. Then, according to our-current understanding,

; the object should look like this:

; class myclass{

; void demo_provate(void);

yinty;

; public:

; void demo(void); // Note that void is used because the function
; /I neither receives nor returns anything.

;int x;

Ny

; S0, we've not only identified the object, but also figured out

; its structure! We can't guarantee that it's free from errors.






preventing a repeated call of the constructor. (See the "bonstructors and Destructorg" section for more details.)

Therefore, it's easy to distinguish an object instance located in the data segment from a structure or an array.
However, we come across the same difficulties when defining the size.

Finally, objects (structures, arrays) located on the heap are incredibly easy to analyze! Memory is allocated by a
function that explicitly takes the number of bytes to be allocated as an argument. It then returns a pointer to the
beginning of the instance of an object (structure, array). In addition, instances are always called through the base
pointer, although the declaration is done within the scope. (This can't be done any other way, since the actual
addresses of the dynamic memory blocks being allocated are unknown at compile time.)




The this Pointer

The this pointer is a true "life buoy" that saves us from drowning in the stormy ocean of OOP. Using just this, we can
determine to which object instance the called function belongs. Since all nonvirtual functions of an object are called
directly using the actual address, the object appears to be split at compile time into the functions that compose it. If
there were no this pointers, it would be impossible to reconstruct the hierarchy of functions!

Thus, correct identification of this is very important. The only problem is how to distinguish it from pointers to arrays
and structures. We identify an object instance using the this pointer; if this points to allocated memory, we are dealing
with an object instance. However, by definition, this is a pointer that refers to an object instance. We have a
never-ending loop! Fortunately, there is a loophole — a specific code handles the this pointer, allowing us to
distinguish it from all other pointers.

Generally, each compiler has its own specifics; | strongly recommend that you study them by disassembling your own
C++ programs. However, there are some commonly accepted guidelines for most implementations. Since this is an
implicit argument of each member function of a class, it seems reasonable to defer further discussion of its
identification until the "Function Argumentd" section. Here we'll just give a brief table summarizing the mechanisms of
passing this in various compilers:

Table 1: The Mechanisms of Passing the this Pointer

Function type
Compiler
default fastcall cdecl stdcall Pascal
Microsoft The this pointer is passed
Visual C++ through the ECX register. ) ) The this pointer is passed
The this pointer is passed
through the stack as the
Borland C++ through the stack as the last | ;
——| The this pointer is passed argument. astargument of a
Watcom through the EAX register. function.
C++




The new and delete Operators

The compiler translates the new and delete operators into calls of library functions that can be precisely recognized
like ordinary library functions. (See the "Library Functions" section.) IDA Pro, in particular, can recognize library
functions automatically, removing this concern from the user's mind. However, not everyone has IDA Pro. In addition, it
doesn't know all library functions and doesn't always recognize new and delete among those it knows. Thus, there are
lots of reasons for identifying these functions manually.

The new and delete operators can have any implementation, but Windows compilers rarely implement functions for
working independently with the heap — there's no need for them. It's easier to use the operating system services.
However, it's naive to expect the call of HeapAlloc instead of new, or HeapFree instead of delete. The compiler isn't that
simple! The new operator is translated into the new function, which calls malloc for memory allocation; malloc, in turn,
calls heap_alloc (or a similar function, depending on the implementation of the memory management library). This
function acts as a "wrapper" for the Win32 API procedure of the same name. Releasing memory is performed in a
similar way.

It's too tedious to go deep into the jungle of nested calls. But it's possible to identify new and delete in a less laborious
way. Let's recall all we know about the new operator:

The new operator takes only one argument — the number of memory bytes to be allocated. This argument is
calculated at compile time in the majority of cases, making it a constant.

B |f the object contains neither data nor virtual functions, its size is one memory unit (the minimum
memory allocation, giving this something to point to). Therefore, a lot of calls will be of the PUSH
01\CALL xxx type, where xxx is simply the new address. The typical size of objects is less than 100
bytes. So look for a frequently called function that has a constant smaller than 100 bytes as an
argument.

B The new function is one of the most popular library functions, so look for a function that has a "crowd"
of cross-references.

B mpressively, ne furns the this pointer, and this is easily identified, even when you are glancing over
the code. (See "[Th thislﬁointe " section.)

B The result returned by new j ality to zero. If it equals zero, the constructor (if
there is one — see the "[Constructors and Destructorq" section) isn't called.

The new operator has more "birthmarks" than necessary to quickly and reliably identify it, so there's no need to waste
time analyzing its code. Still, keep in mind that new is used not only to create new object instances, but also to
allocate memory for arrays, structures, and, occasionally, single variables (of the sortint *x = new int; it's usually pretty
stupid, but some people do it). Fortunately, it's simple to distinguish the creation of a new object instance from the
allocation of memory — neither arrays, nor structures, nor single variables have the this pointer!

=

To sum up, let's consider a code fragment generated by the Watcom compiler (IDA Pro doesn't recognize its "native"
new operator):

Listing 68: Identifying the new Operator

main_ proc near ; CODE XREF: __CMain+40! p
push 10h
call _ CHK
push ebx
push edx
mov eax, 4
call W?$nwn_ui_pnv
; This is, as we'll find out later, the new function.
; By the way, IDA has recognized it,






Things are quite different in Borland C++. First, it works directly with the Windows virtual memory and implements its
own heap manager based on VirtualAlloc/VirtualFree functions. Testing shows that it performs poorly on Windows 2000.
(I didn't test other systems.) It also places superfluous code in the program that increases its size. In addition, new calls
the malloc function — not directly, but through several layers of "wrapping" code! Therefore, contrary to all guidelines,
in Borland C++, calling malloc is more effective than calling new.

Watcom C++ (its eleventh version, in any case — the latest one | could find) implements new and malloc in practically
identical ways: Both of them refer to _nmalloc, a “thick" wrapper of LocalAlloc, the 16-bit Windows function that itself is a
thunk to HeapAlloc!




Library Functions

Reading code of a program written in a high-level language, we can only analyze the implementation of standard
library functions (such as printf) in exceptional cases. But there's really no need to do so! We already know the purpose
of such functions. If there are some uncertainties, we can consult the documentation.

Analyzing a disassembled listing is another matter. Function names are rarely present, so it's impossible to determine
visually whether we're dealing with printf or another function. We have to delve into the algorithm, which is easier said
than done! The printf is a complex interpreter of the format specification string; it's difficult to make it out right away. Of
course, there are more monstrous functions, whose operation algorithms have no relation to the analysis of the
program under investigation. The same new can allocate memory from the Windows heap or use its own manager.
It's enough to know that it's new, a function for memory allocation, and not free or open.

On average, library functions constitute 50 percent to 90 percent of a program. This is especially true of programs
composed in visual development environments that employ automatic code generation (Microsoft Visual C++ and
Delphi, for example). Library functions are sometimes more intricate and difficult to understand than the simple
program code. It's almost insulting — the lion's share of effort needed to perform the analysis appears to be a waste.
Is it possible to optimize this process?

The ability of IDA Pro to recognize standard library functions of numerous compilers favorably distinguishes it from
most other disassemblers. Unfortunately, IDA (like everything created by man) is far from ideal — the list of supported
libraries may be extensive, but particular versions from specific suppliers or certain memory models may be lacking.
Moreover, not all functions, even those from libraries known to IDA, are recognized. (The reasons for this will be given
later.)

An unrecognized function is half the trouble. A function recognized incorrectly is much worse, since this results in
errors (sometimes hard to find) in the analysis of the program, or leads a code digger to a dead end. For example,
fopen is called, and the result it returns is transferred to free. Then, fopen returns a pointer to the FILE structure, and
free deletes it. However, what if free isn'tfree at all? What if it's fseek? Having skipped the operation of positioning, we
won't be able to figure out the correct structure of the file with which the program works.

It's easier to recognize IDA errors if we understand how the disassembler performs recognition. For some reason,
many people assume a trivial CRC (Cyclic Redundancy Check) is involved. It is tempting to perform a CRC, but this
would be unsuitable for solving this task. The main obstacles are variable fragments, namely, relocatable elements.
(See "Step Four: Getting Acquainted with the Debugger" for more details.) Relocatable elements can be ignored when
you perform a CRC — if you remember to perform the same operation in the function being identified. Nevertheless,
the developer of IDA has chosen another way. It's more intricate and artful, but more efficient.

The key idea is that there's no need to waste time performing a CRC — a trivial character-by-character matching,
ignoring relocatable elements, will do for preliminary identification of the function. Truthfully, matching is not performed,;
instead, a search is made for a particular sequence of bytes in the standard base, organized as a binary tree. The
time a binary search takes is proportional to the log of the number of records in the base. Common sense tells us that
the length of a template (a signature, or the sequence being matched) should be sufficient to clearly identify the
function. However, IDA's developer decided to limit us to the first 32 bytes. (This is rather few, especially allowing for
the prolog, which is practically identical for all functions.)

And rightly so! Many functions end up on the same leaf of the tree, causing a collision, or ambiguity in the
identification. To resolve the situation, CRC16 is calculated from the thirty-second byte to the first relocatable element
for all the functions that can collide, then compared to CRC16 for standard functions. As a rule, this works. But if the
first relocatable element is too close to the thirty-second byte, the sequence for counting CRC16 appears too short or
even of zero length. (The thirty-second byte can be a relocatable element.) For a repeated collision, we find the byte in
the functions by which they differ and remember its offset in the base.

With IDA, we match character-by-character not to the end, but only for 32 bytes; we calculate CRC not for the entire
function, but depending on the case; and we consider the last byte as the "key" one, but not always. Many functions



coincide byte-to-byte but completely differ in their names and purpose. You don't believe me? Then look at the
following:

Listing 69: The Difficulty in Identifying Library Functions

read: write:
push ebp push ebp
mov ebp, esp mov ebp, esp
call _read call _write
pop ebp pop ebp
ret ret

Here we must analyze relocatable elements! This is not a far-fetched example; there are lots of similar functions. The
libraries from Borland, in particular, teem with them. It's no wonder that IDA frequently "stumbles" over them and runs
into gross errors. Let's take the following function as an example:

void demo(void)

{
print("DERIVED\n");

K
Even IDA 4.17, the latest version available while | was writing this book, makes a mistake, calling it __pure error:

CODE:004010F3 ___pure_error_ proc near ; DATA XREF: DATA:004080BC1 o

CODE:004010F3 push ebp

CODE:004010F4 mov ebp, esp
CODE:004010F6 push offset aDerived ; format
CODE:004010FB call _printf
CODE:00401100 pop ecx

CODE:00401101 pop ebp

CODE:00401102 retn

CODE:00401102 __pure_error_ endp

Is it worth talking about the unpleasant consequences this error can have for analysis? You could be sitting, stupidly
staring at the disassembler listing, and for the life of you be unable to understand what a fragment does. It's only later
that you figure out one or more functions were identified incorrectly!

To decrease the number of errors, IDA tries to recognize the compiler by the startup code. It then loads only the library
of that compiler's signatures. Therefore, it's easy to "dazzle" IDA by slightly modifying the start code. This code usually
is delivered with the source texts of the compiler, so alterations can be made easily. Changing one byte at the
beginning of the startup function will suffice. And that's all — the hacker has to give up! Fortunately, IDA provides the
possibility of manually loading the base of signatures (FILE\Load file\FLIRT signature file), but how can we determine
which library versions' signatures must be loaded? Guessing takes too much time. It helps if you visually identify the
compiler. (Experienced code diggers usually succeed in doing so, since each compiler has a unique "handwriting.")
Instead, you could simply use libraries from the delivery of one compiler in a program compiled by another compiler.

Be prepared to identify library functions by yourself. This task consists of three stages: deciding if the function is a
library one, determining the origin of the library, and identifying the function according to this library.

The linker usually allocates functions in the order of the listing of OBJ modules and libraries. Most programmers
specify their own OBJ modules, then libraries. (Compilers independently calling the linker upon termination of their
operation also behave in this way.) Therefore, we can conclude that library functions are located at the end of the
program, and the code of the function is at the beginning. There are exceptions to this rule, but it often works.

Let's consider, for example, the structure of the well-known program pkzip.exe ). The diagram constructed by
IDA 4.17 shows all library functions concentrated in one place — at the end of the code segment. They closely adjoin
the data segment. In most cases, the start-up function is located at or close to the beginning of the library functions.
Finding start-up isn't a problem; it coincides with the entry point into the file!
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Figure 14: The structure of pkzip.exe, showing all library functions in one place — at the end of the code
segment, but before the beginning of the data segment

Thus, we can take it almost for granted that all functions located "below" start-up (that is, at higher addresses) are
library ones. Has IDA recognized them, or has it shifted this problem to you? Two situations are possible: No functions
are recognized, or only some functions are recognized.

If no functions are recognized, it is likely that IDA failed to identify the compiler or encountered unknown versions of
libraries. Recognizing compilers is a matter for a special consideration. For now, we'll focus on recognizing library
versions.

First, many libraries contain copyrights that include the name of the manufacturer and the library version — simply
look for the corresponding text strings in the binary file. If they aren't there, it doesn't matter. We'll perform a simple
context search to find other text strings (as a rule, error messages) in all the libraries we can reach. (Code digger
should have many compilers and big libraries on their hard disks.) Possible options are: There are no other text
strings; there are strings, but they are found in many libraries; or the fragment being searched for isn't found. In the
first two cases, we need to single out a distinctive byte sequence, which doesn't contain relocatable elements, from
one or several library functions. Then we must search for it again in all accessible libraries. If this doesn't help, then
you don't have the required library.

Such a situation is bad, but not hopeless! Without the required library, we wouldn't be able to restore the function
names automatically, but we could find the purpose of the functions. The names of the Windows API functions called
from the libraries allow us to identify at least the category of the library (for example, for working with files, memory,
graphics, etc.). Mathematical functions are typically rich with coprocessor instructions.

Disassembling is similar to solving a crossword puzzle: Unknown words are guessed using known ones. In some
contexts, the name of a function follows from its purpose. For example, we could ask the user for a password, then
pass it to the X function along with the standard password. If the completion result is zero, we write "password OK;" we
also write something appropriate for the opposite situation. Your intuition suggests that the X function is strcmp,
doesn't it? This is a simple case. But if you encounter an unfamiliar subroutine, don't despair over its "monstrosity."
Look at all of its entries, paying attention to who calls it, when, and how many times.

A statistical analysis clarifies many things. Each function, like each letter in an alphabet, occurs at a specific rate. The
dependence on context also gives us food for thought. For example, a function for reading from the file can't precede a
function for opening it!

Other catches include arguments and constants. For arguments, everything is more or less clear. If a function receives
a string, it obviously is from the library for working with strings; if a function receives a floating-point value, it possibly
belongs to the mathematical library. The number and type of arguments (if we take them into account) substantially
narrow the range of possible candidates. Things are even easier with constants — many functions accept a flag that
can have a limited number of values as an argument. Except for bit flags, which are as alike as peas in a pod, unique
values are frequently encountered. Although they do not positively identify the function, they do narrow the range of
"suspects.” Besides which, functions may contain characteristic constants. For example, if you encounter a standard
polynomial for calculating the CRC, you can be sure that the "suspect” calculates the checksum. An objection can be
raised here: All these are details. Perhaps there's a point to this. Having identified some of the functions, the rest of
them can be identified using the rule of the contraries. But at least it's possible to know the kind of library and where to
search for it.

Finally, the identification of algorithms (that is, the purposes of functions) is greatly facilitated by knowledge of these
algorithms. In particular, a code that performs LZ packing (unpacking) is so distinctive that it can be recognized at a
glance — you just need to know this packing mechanism. If you don't know the mechanism, however, analysis of a
program will be extremely difficult! Some people may assume that we wouldn't obtain such information. However,
despite a common opinion that a hacker is a hacker, first, and a programmer, second, everything in life is
contradictory. The programmer who doesn't know how to program can make a living — there are many libraries; just
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use them and earn! A hacker can break off a serial number without higher mathematics, but will get on better knowing
computer science.

Libraries were created to relieve developers from having to penetrate into those areas of learning that they deem
unnecessary. Alas, code diggers don't get off as easy. They have to use their hands, their heads, and even their spinal
cords. This is the only way to disassemble serious programs. Sometimes a solution comes while you're on a train, or
even asleep.

The analysis of library functions is a difficult aspect of disassembling. It's simply wonderful that you have the option of
identifying their names by the signatures.




Function Arguments

Identifying function arguments is a key part of the analysis of disassembled programs. So prepare yourself: This
section may seem long and boring. Unfortunately, there's no way around it — knowing the basics of hacking has its
price!

There are three ways to pass arguments to a function: via the stack, via registers, and via the stack and registers
simultaneously. The transfer of implici ments through global variables comes close to joining this list, but this is

P argu
covered in another section ("[Global Variableg").

Arguments can be transferred by value or by reference. In the first case, a copy of the corresponding variable is passed
to the function; in the second case, a pointer is passed.

Conventions on passing arguments To work successfully, the calling function should not only know the prototype of the
called function, but also should "agree" upon the method of passing arguments with it: by reference or by value, via
registers or via the stack. If arguments are passed via registers, it shows which argument is placed in which register. If
arguments are passed via the stack, it must define the order in which arguments are placed. It also must ascertain who
is "responsible” for clearing up the stack of arguments after the called function is executed.

The ambiguity of the mechanism for passing arguments is one of the reasons for incompatibility between various
compilers. Why not force all compiler manufacturers to follow one method? Alas, this solution would pose more
problems than it would solve.

Each mechanism has its own merits and drawbacks, and each is interrelated with the language. In particular, C's
looseness concerning the observance of function prototypes is possible because the arguments are pushed out from
the stack not by the called function (child), but by the calling one (parent), which remembers what it has passed. For
example, two arguments are passed to the main function: the count of command-line arguments, and the pointer to an
array that contains them. However, if a program doesn't work with the command line (or receives the argument in
another way), a prototype of main can be declared in the following manner: main().

In Pascal, such a trick would result either in a compilation error or in the program crash. In this language, the stack is
cleared by the child function. If the function fails to do this (or does this incorrectly, popping out a number of words
different from the number passed to it), the stack will be unbalanced, and everything will come crashing down. (More
specifically, all addressing of the local variables of the parent function will be impaired, and a random value will appear
on the stack instead of the return address.)

The drawback of C's solution is the insignificant increase in the size of the generated code. We need to insert a
processor instruction (and occasionally more than one) to pop arguments from the stack after each function call. In
Pascal, this instruction is used in the function directly, and consequently, occurs only once in the program.

Having failed to find a suitable middle ground, compiler developers have decided to use all possible data-transfer
mechanisms. To cope with compatibility problems, they have standardized each mechanism by adopting a number of
conventions:

B The C convention (designated as __cdecl) directs you to send arguments to the stack from right to left in
the order in which they are declared. It charges the called function with clearing the stack. The names
of the functions that observe the C convention are preceded with the "_" character, automatically
inserted by the compiler. The this pointer (in C++ programs) is transferred via the stack last.

B The Pascal convention (designated as PASCALM) directs you to send arguments to the stack from left
to right in the order in which they are declared. It charges the calling function with clearing the stack.

The standard convention (designated as __stdcall) is a hybrid of the C and Pascal conventions.
Arguments are sent to the stack from right to left, but clearing the stack is performed by the calling
function. The names of functions that adhere to the standard convention are preceded with the "_"
character and end with the "@" suffix. This is followed by the number of bytes being transferred to the



function. The this pointer (in C++ programs) is transferred via the stack last.

B The fastcall convention dictates that you transfer arguments via registers. Compilers from Microsoft
and Borland support the __fastcall keyword, but they interpret it differently. Watcom C++ doesn't
understand the __fastcall keyword, but it has a special pragma — "aux" — in its pocket that allows you to
manually choose the registers for transferring arguments (see the "Fastcall Conventions" explanation
further on for more details). The names of the functions that adhere to the __fastcall convention are
preceded by the "@" character, which is automatically inserted by the compiler.

B The default convention. If there's no explicit declaration of the call type, the compiler usually uses its
own conventions and chooses them at its own discretion. The this pointer is the most influenced — by
default, most compilers transfer it via a register. For Microsoft, this is ECX, for Borland it is EAX, and for
Watcom it is EAX, EDX, or both of them. Other arguments can be transferred via registers if the
optimizer considers this a better way. The mechanism of transferring arguments and the logic of
sampling them is different in different compilers. It is also unpredictable—we have to figure it out from
the situation.

Goals and tasks When analyzing a function, a code digger faces the following task: He or she must determine what
type of convention is used for calling, count the number of arguments being transferred to the function (and/or being
used by the function), and clarify the type and purpose of arguments. Shall we begin?

The convention type is roughly identified by the way the stack is cleared. If it's cleared by the called function, we're
dealing with cdecl; otherwise, we are dealing with stdcall or PASCAL. This uncertainty occurs because, if the original
prototype of the function is unknown, the order for placing arguments onto the stack can't be determined. But if the
compiler is known and the programmer has used the default types of calls, it's possible to determine the type of
function call. In programs for Windows, both PASCAL and stdcall calls are widely used, so the uncertainty remains.
However, nothing changes the order of transferring arguments: If both calling and called functions are available, we
can always establish a correspondence between transferred and received arguments. In other words, if the actual
order of passing arguments is known (and it should be known — see the calling function), we don't even need to
know the sequence of arguments in the function prototype.

Another matter is presented by library functions whose prototypes are known. If you know the order in which
arguments are placed into the stack, it's possible to figure out their type and purpose from the prototype!

Determining the number of arguments and the way they are passed As we mentioned above, arguments can be passed
via the stack, via registers, or via both the stack and registers simultaneously. Implicit arguments can also be
transferred via global variables.

If the stack was only used for passing arguments, it'd be easy to count them. Alas, the stack is actively used for
temporary storage of the data from registers, too. Therefore, if you encounter the PUSH instruction, don't rush to
identify it as an argument. It's impossible to determine the number of bytes passed to the function as arguments, but
we can easily determine the number of bytes that are popped from the stack after the function is completed!

If the function obeys the standard or Pascal convention, it clears the stack using the RET n instruction (n is simply the
required value in bytes). Things are not as simple with cdecl functions. In general, their call is followed by the instruction
ADD ESP, n (again, nis the required value in bytes). But variations are possible; there could be a delay in clearing the
stack, or arguments could be popped into any free register. However, we'll defer optimizing riddles, being content with
non-optimizing compilers.

We can assume that the number of bytes placed onto the stack equals the number of those popped out; otherwise,
after the function is executed, the stack will become unbalanced, and the program will crash. (Optimizing compilers
allow a misbalance of the stack in some parts, but we'll save this discussion for later.) Hence, the number of

arguments equals the number of transferred bytes divided by the word sizem. Is this correct? No, it isn't! Few
arguments occupy exactly one element of the stack. The type double, for example, consumes 8 bytes; a character
string transferred by value, not by reference, will "eat" as many bytes as it needs. In addition, a string, data structure,
array, or object can be pushed onto the stack using the MOVS instruction instead of PUSH. (By the way, the use of
MOVS is strong evidence that the argument was passed by value.)

Let's try to sort out the mess I've created in our heads. It's impossible to determine the number of arguments passed
via the stack by analyzing the code of the calling function. Even the number of passed bytes cannot be determined



definitively. The type of transfer is also veiled in obscurity. In the "bonstants and Offsetg" section, we'll return to this
question. For now, we'll give the following example: PUSH 0x40404040/CALL MyFuct:0x404040. What is this: an
argument passed by value (the constant 0x404040), or a pointer to something located at the offset 0x404040 (passed by
reference)? This problem can't be resolved, can it?

Don't worry; the curtain hasn't fallen yet, and we'll continue the fight. The majority of problems can be solved by an
analysis of the called function. Having clarified how it treats the arguments passed to it, we'll determine both their type
and quantity. For this, we'll have to become acquainted with addressing arguments on the stack. For an easy warm-up,
let's consider the following example:

Listing 70: A Mechanism of Passing Arguments

#include <stdio.h>
#include <string.h>

struct XT{
char s0[20];
int x;
h
void MyFunc(double a, struct XT xt)
{
printf("%f, %x, %s\n", a, xt.x, &xt.s0[0]);
}
main()
{
struct XT xt;
strcpy(&xt.s0[0], "Hello, World!");
xt.X = OX777;
MyFunc(6.66, xt);
}

The disassembled listing of this program compiled using the Microsoft Visual C++ compiler with its default
configuration looks like this:

Listing 71: The Disassembled Code for Passing Arguments Using Visual C++

main proc near ; CODE XREF: start+AF! p
var_18 = byte ptr -18h
var_4 = dword ptr -4

push ebp

mov ebp, esp

sub esp, 18h

; The first PUSH relates to the function prolog,
; ot the arguments being passed.

push esi

push edi

; The lack of explicit initialization of registers indicates

; that they probably are saved on the stack, not passed as

; arguments. However, if arguments passed to this function

; not only via the stack, but also via the ESI

; and EDI registers, placing them onto the stack might indicate
; that the arguments will be passed to the next function.

push offset aHelloworld ; "Hello, World!"

; Aha! Here is the passing of the argument — a pointer to the
; string. (Strictly speaking, passing probably occurs. See the
; "Constants and Offsets" section for an explanation.)



; Theoretically, it's possible to save a constant temporarily on
; the stack, then pop it out into any of available registers.

; It's also possible to directly address it in the stack.

; However, | know no compilers capable of these

; cunning maneuvers. Placing a constant onto the stack

; is always an indication of passing an argument.

lea eax, [ebp+var_18]
; The pointer to a local buffer is placed in EAX.

push eax

; EAX is saved on the stack.

; The series of arguments is indissolvable. Having recognized
; the first argument, we can be sure that everything pushed

; onto the stack is an argument, too.

call strcpy

; The prototype of the strcpy (char*, char*) function doesn't allow

; us to determine the order in which arguments are placed. However,
; since all library C functions obey the cdecl convention, the

; arguments are placed from right to left. Thus, the code initially

; looked like this: strcpy (&buff[0], "Hello, World!"). Could the
; programmer instead use a conversion such as stdcall? This is

; extremely unlikely, since the strcpy itself would have to be

; recompiled; otherwise, where it would learn that the order

; in which arguments are placed has changed? Although standard
; libraries are, as a rule, delivered with the source codes

; included, practically nobody ever recompiles them.

add esp, 8

; Since 8 bytes are popped out of the stack, we can conclude that

; two words of arguments were passed to the function. Consequently,
; PUSH ESI and PUSH EDI were not arguments of the function!

mov [ebp+var_4], 777h

; The constant 0x777 is placed in a local variable.

; It's certainly a constant, not a pointer, because in Windows
; no user data can be stored in this memory area.

sub esp, 18h

; Memory is allocated for a temporary variable. Temporary variables
; are created when arguments are passed by value. Therefore, let's
; prepare ourselves for the next "candidate” to be an argument.

; (See the "Register and Temporary Variables" section.)

mov  ecx, 6
; The constant 0x6 is placed in ECX. We don't yet know the purpose.

lea esi, [ebp+var_18]
; The pointer to the local buffer, which contains the copied
; string "Hello, World!", is placed in ESI.

mov edi, esp
; The pointer is copied to the top of the stack in EDI.

repe movsd

; Here it is - passing the string by value. The entire string is

; copied on the stack, swallowing 6*4 bytes of it (where 6 is the value
; of the ECX counter, and 4 is the size of the double word - movsd).

; Hence, this argument occupies 20 (0x14) bytes of stack space. We'll
; use this value to determine the number of arguments according to

; the number of bytes being popped out. The data from [ebp+var_18]






; The strcpy call has vanished. The compiler didn't even expand
; the function by replacing it where the call takes place -
; it simply excluded the call!

lea edi, [ebp+var_18]
; The pointer to the local buffer is placed in EDI.

mov  eax, edi
; The same pointer is placed in EAX.

mov  ecx, 3

repe movsd

movsb

; Note: 4*3+1=13 bytes are copied - 13, not 20 as we would expect
; judging from the structure declaration.

; This is how the compiler has optimized the code:

; It has copied only the string into the buffer,

; ignoring its uninitialized "tail."

mov [ebp+var_4], 777h
; The value of the constant 0x777 is assigned to a local variable.

push 401AA3D7h

push 0A3D70A4h

; Same here. We can't determine whether these two numbers
; are one or two arguments.

lea ecx, [ebp+var_18]
; The pointer to the string's beginning is placed in ECX.

mov  edx, 5
; The constant 5 is placed in EDX. (The purpose isn't yet clear.)

loc_4010D3: ; CODE XREF: _main+37!j
push dword ptr [ecx+edx*4]
; What kind of awful code is this? Let's try to figure it out
; starting from its end. First of all, what does ECX+EDX*4 make?
; ECXis the pointer to the buffer,
; and we understand that pretty clearly, but EDX*4 == 5*4 == 20.
; Ahal So we obtained a pointer to the end of the string,
; not to its beginning. Actually it's a pointer not to the end,
; but to the variable ebp+var_4 (0x18-0x14=0x4). If this is
; the pointer to var_4, then why is it calculated in such an
; intricate manner? We're probably dealing with a structure.
; And look: The push instruction sends a double word onto the stack
; that is stored at the address according to this pointer.

dec edx
; Now we decrement EDX... Do you get the feeling
; that we're dealing with a loop?

jns short loc_4010D3

; This jump works until EDX is a negative number,

; which confirms our assumption about the loop. Yes, this

; unnatural construction is used by Borland to pass the argument -
; @ structure - to the function by value!

call MyFunc

; Look: The stack isn't cleared! This is

; the last function called, and stack doesn't need
; to be cleared - so Borland doesn't bother.






we must correct this formula, adding the EBP register capacity (BP in 16-bit mode) to the size of the return address.

From the hacker's point of view, there's a key advantage of such addressing of arguments: Having seen an instruction
like MOV EAX, [EBP+0x10] somewhere in the middle of the code, we can instantly calculate which argument is being
addressed. However, to save the EBP register, the optimizing compilers address arguments directly via ESP. The
difference is basic! The ESP value changes during the function's execution; it changes every time data is pushed onto
or popped off the stack. Thus, the offset of arguments relative to ESP doesn't remain constant either. To determine
exactly which argument is addressed, we need to know the value of ESP at a given point of the program. For this, we
have to trace all of its changes from the beginning of the function. We'll discuss this "artful" addressing in greater detail
later. (See the "Local Stack Variableg" section.) For now, let's return to the previous example (it's time to complete it)
and analyze the called function:

Listing 73: The Disassembled Code of a Function Receiving Arguments

MyFunc proc near ; CODE XREF: main+391 p

arg_0 = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = byte ptr 10h
arg_1C = dword ptr 24h

; IDA recognized four arguments passed to the function.

; However,we shouldn't blindly trust IDA. If one argument

; (int64, for example) is passed as several words, IDA will accept it

; as several arguments, not as one! Therefore, the result produced

; by IDA should be interpreted as follows: no less than four arguments
; were passed to the function. However, again, everything is not that easy!
; Nothing prevents the called function from accessing

; the stack of the parent function as deeply as it wants.

; Perhaps nobody passed us any arguments,

; and we've rushed into the stack and stolen something from it.

; This mainly results from programming errors

; that occur because of confusion over prototypes. However, we need
; to take into account such a possibility. (In any case, you'll

; encounter it sometimes, so be informed). The number next to 'arg’

; represents the offset of the argument relative to the beginning

; of the stack frame. Note: the stack frame is shifted

; by 8 bytes relative to EBP - 4 bytes hold the saved

; return address, and an additional 4 bytes are used

; for saving the EBP register.

push ebp

mov  ebp, esp

lea  eax, [ebp+arg_8]

; A pointer to an argument is obtained. Attention: a pointer to

; an argument, not an argument pointer! Now, let's figure out

; for which argument we're obtaining this pointer. IDA has already

; calculated that this argument is displaced by 8 bytes relative to

; the beginning of the stack frame. In the original code,

; the bracketed expression looked like ebp+0x10 - just as it is shown
; by most disassemblers. If IDA were not so clever, we would have had
; to manually and permanently subtract 8 bytes from each

; address expression. We'll still have a chance to practice this.

; What we pushed onto the stack last is on top.

; Let's look at the calling function to find what we pushed (see the

; variant compiled by Microsoft Visual C++). Aha! The last items

; were the two unclear arguments. Before them, a structure

; consisting of a string and a variable of the int type was placed

; onto the stack. Thus, EBP+ARG_8 points to a string.

push  eax
; The obtained pointer is pushed onto the stack.



; The pointer likely will be passed to the next function.

mov ecx, [ebp+arg_1C]

; The contents of the EBP+ARG_1C argument are placed in ECX.
; What does it point to?

; You may recall that the int type is in the structure at an offset

; of 0x14 bytes from the beginning, and ARG_8 is simply

; its beginning.Consequently, 0x8+0x14 == 0x1C. That is,

; the value of the variable of the int type is a member

; of the structure, and is placed in ECX.

push  ecx
; The obtained variable is placed onto the stack. It was passed
; by value, because ECX stores the value, not the pointer.

mov edx, [ebp+arg_4]
; Now, we take one of the two unclear arguments
; that were placed last onto the stack...

push  edx
; ... and push them onto the stack again to pass
; the argument to the next function.

mov eax, [ebp+arg_0]
push  eax
; The second unclear argument is pushed onto the stack.

push  offset aFXS ; "%f,%x,%s\n"

call _printf

; Oops! Here we have the call of printf, passing a format

; specification string! The printf function, as you probably know,

; has a variable number of arguments, the type and quantity

; of which are specified by this string. Remember

; that we first placed the pointer to the string on the stack.

; The rightmost specifier %s indicates the output

; of a string. Then, a variable of the int type was placed onto the

; stack. The second specifier is %x - the output of an integer

; in hexadecimal representation. Then comes the last specifier -

; %f - which corresponds to placing two arguments onto the stack.
; If we look into the programmer's guide for Microsoft Visual C++,
; we'll see that the %f specifier outputs a floating-point value,

; which, depending on the type, can occupy 4 bytes (float)

; or 8 bytes (double). In this case, it obviously occupies

; 8 bytes, making it a double. Thus, we've reconstructed

; the prototype of our function. Here it is:

; cdecl MyFunc (double a, struct B b)

; The call type is cdecl - that is, the stack was cleared by

; the calling function. Alas, the original order of

; passing arguments can't be figured out. Remember that

; Borland C++ cleared the stack using the calling function,

; but changed the order of passing parameters.

; It seems likely that if a program was compiled by Borland C++,

; we can simply reverse the order of arguments. Unfortunately,

; it's not so easy. If there was an explicit conversion

; of the function type to cdecl, Borland C++

; would follow its orders. Then, reversing the

; order of arguments would give an incorrect result! However, the
; original order of arguments in the function prototype doesn't play
; arole. It's only important to establish a correspondence between
; the passed and accepted arguments, which we have done.

; Note: This was possible only with the combined analysis

; of the called and calling functions.






; for clearing the stack from the arguments placed into it.
; If the compiler hasn't decided on

; a delayed cleanup, it is likely that the stack is cleared

; by the called function. Consequently, the type of call

; is stdcall, which was what we wanted to prove.

push eax
; The value returned by the function is passed
; to the following function as an argument.

push offset asc_406040 ; "%x\n"

call _printf

; OK, this is the next printf function. The format string shows
; that the passed argument has the int type.

add esp, 8

; This popped 8 bytes from the stack. Of these, 4 bytes relate
; to the argument of type int, and 4 bytes to the pointer

; to the format string.

pop ebp
retn
main endp

; int __cdecl MyFunc(int, int, const char *)
MyFunc proc near ; CODE XREF: sub_40101D+12! p
; Beginning with version 4.17, IDA automatically reconstructs the
; function prototypes. However, it does not always do this correctly.
; In this case, IDA has a made a gross error - the call type cannot
; be cdecl, since the stack is cleared up by the called function!
; It seems likely that IDA doesn't even attempt
; to analyze the call type. Instead, it probably takes
; the call type from the default settings
; of the compiler that it has recognized. In general, the results
; of IDA's work should be cautiously interpreted.

arg_0 = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = dword ptr 10h

push ebp

mov ebp, esp

push esi

; This, apparently, is saving the register on the stack.

; It's not passing it to the function because the register hasn't
; been explicitly initialized, neither by the calling function,

; nor by the called one.

mov  esi, [ebp+arg_0]
; The last argument pushed onto the stack is placed into
; the ESI register.

add esi, [ebp+arg_4]
; The contents of ESI are added to the last argument placed
; onto the stack.

mov eax, [ebp+arg_8]
; The next-to-last argument is written into EAX...

push eax ; const char *
; ... and pushed onto the stack.


















; we can determine the type and purpose of arguments.
; In this case, the source code looked like this:

; SetTimer (NULL, BULL, 1000, TimerProc);

loc_401051: ; CODE XREF: main+421 j
push O ; wMsgFilterMax
; NULL - no filter

push O ; wMsgFilterMin
; NULL - no filter

push 0 ;hwnd
; NULL - no windows in the console application

lea eax, [ebp+Msg]

; Get the pointer to the msg local variable.

; The type of this variable is determined only

; on the basis of the prototype of the GetMessageA function.
push eax ; IpMsg

; Pass the pointer to msg.

call ds:GetMessageA
; The GetMessageA(&msg, NULL, NULL, NULL) function is called.

test eax, eax
jz shortloc_40107B
; This is the check for WM_QUIT.

lea ecx, [ebp+Msg]
; ECX contains the pointer to the filled MSG structure...

push ecx ; IpMsg
; ... and passes it to the TranslateMessage function.

call ds:TranslateMessage
; The TranslateMessage(&msg) function is called.

lea edx, [ebp+Msg]
; EDX contains the pointer to msg...

push edx ; 1pMsg
; ... and passes it to the DispatchMessageA function.

call ds:DispatchMessageA
; The DispatchMessageA function is called.

jmp short loc_401051
; This is the message handling loop...

loc_40107B: ; CODE XREF: main+2C1
; ... and the output.

mov  esp, ebp

pop ebp
retn
main endp
TimerProc proc near ; DATA XREF: main+61 o

; IDA hasn't automatically reconstructed the prototype of TimerProc as
; a consequence of the implicit call of this function by the operating
; system - we'll have to do this ourselves. We know TimerProc is



; passed to the SetTimer function. Looking into the description

; of SetTimer (SDK should always be near at hand!), we'll find

; its prototype:

; VOID CALLBACK TimerProc(

; HWND hwnd, // Handle of window for timer messages

; UINT uMsg, // WM_TIMER message

; UINT idEvent, // Timer identifier

; DWORD dwTime // Current system time

)

; Now we just have to clarify the call type. This time, it's important.

; Since we don't have the code of the calling function

; (it's located deep under the hood of the operating system),

; we'll be able to find out the argument types

; only if we know the order in which they are passed.

; We already mentioned above that all CALLBACK functions obey the
; Pascal convention. Don't confuse CALLBACK functions with Win32 API
; functions! The former are called by the operating system,

; the latter by an application.

; OK, the call type of this function is PASCAL. This means that arguments
; will be pushed from left to right, and the stack is cleared by the

; called function. (You should make sure that this is really the case.)

arg_C = dword ptr 14h

; IDA has revealed only one argument - although, judging by the prototype,
; four of them are passed. Why? It's simple: The function used

; only one argument. It didn't even address the rest of them.

; It appears that IDA was not able to determine them!

; By the way, what kind of argument is this?

; Let's see: Its offset is OxC. On the top of the stack, we find

; what was pushed onto it last. On the bottom, we should see

; the opposite. But it turns out

; that dwTime was placed onto the stack first! (Since we have the source code,
; we know for certain that arg_C is dwTime.) The Pascal convention

; requires pushing arguments in the reverse order. Something is wrong

; here... The program works, however (launch it to check). The SDK

; says CALLBACK is an analog of FAR PASCAL. So everything is clear

; with FAR - all calls are near in WinNT/9x . But how can we explain

; the inversion of pushing arguments? Let's look into <windef.h>

; and see how the PASCAL type is defined there:

; #elif ( MSC_VER >= 800) || defined( STDCALL_SUPPORTED)

; #define CALLBACK __stdcall

; #define WINAPI __stdcall

; #define WINAPIV __cdecl

; #define APIENTRY WINAPI

; #define APIPRIVATE __stdcall

; #define PASCAL __stdcall

; Well, who would have thought it! The call declared

; as PASCAL is actually stdcall! And CALLBACK is also defined

; as stdcall. At last, everything is clear. (Now, if someone tells you

; that CALLBACK is PASCAL, you can smile and say that a hedgehog is
; a bird, although a proud one - it won't fly until you kick it!)

; It seems likely that rummaging in the jungle of include files may

; be beneficial. By the way, perversions with overlapping types

; create a big problem when adding modules written in an environment
; that supports call conventions of the PASCAL function to a C project.
; Since PASCAL in Windows is stdcall, nothing will work!

; However, there's still the PASCAL keyword.



; Itisn't overlapping, but it also isn't supported by the

; most recent versions of Microsoft Visual C++. The way out is to use
; the assembly inserts or Borland C++, which, like many other

; compilers, continues to support the Pascal convention.

; So, we've clarified that arguments

; are passed to the CALLBACK functions from right to left,

; but the stack is cleared by the called function,

; as must be done according to the stdcall convention.

push ebp

mov ebp, esp

mov  eax, [ebp+arg_C]

; The dwTime argument is placed into EAX. How did we get this?
; There are three arguments before it on the stack.

; Each has a size of 4 bytes. Consequently, 4*3=0xC.

xor edx, edx
; EDX is zeroed.

mov ecx, 5

; A value of 5 is placed in ECX.
div ecx

; dwTime (in EAX) is divided by 5.

shl edx, 4
; EDX contains the remainder from division; using the cyclic shift

; instruction, we multiply it by 0x10 (or 4th degree of 2).

push edx ; uType

; The obtained result is passed to the MessageBeep function.

; In the SDK, we'll find that MessageBeep accepts

; the constants such as NB_OK, MB_ICONASTERISK, MB_ICONHAND, etc.,
; but nothing is said about the immediate values

; of each constant. However, the SDK informs us that MessageBeep

; Is described in the WINUSER.h file. Let's open it and search

; for MB_OK using the context search:

; #define MB_OK 0x00000000L

; #define MB_OKCANCEL 0x00000001L

; #define MB_ABORTRETRYIGNORE 0x00000002L
; #define MB_YESNOCANCEL 0x00000003L

; #define MB_YESNO 0x00000004L

; #define MB_RETRYCANCEL 0x00000005L

; #define MB_ICONHAND 0x00000010L

; #define MB_ICONQUESTION 0x00000020L

; #define MB_ICONEXCLAMATION 0x00000030L

; #define MB_ICONASTERISK 0x00000040L

; All the constants that we're interested in

; have values of 0x0, 0x10, 0x20, 0x30, and 0x40. Now we can
; get a sense of the program. We divide by 5 the time elapsed

; from the system startup (in milliseconds). The remainder

; Is a number belonging to the interval from 0 to 4. This number
; Is multiplyed by 0x10, - 0x0, 0x0x10 - 0x40.

call ds:MessageBeep
; All possible types of beeps.

mov  eax, [ebp+arg_C]






call @__ WINCRTInit$qv ; _ WINCRTInit(void)
; The WIinCRT module is initialized.

push bp

mov  bp, sp

; The function prolog is in the middle of the function.
; This is Turbo Pascal!

XOr ax, ax
call @__StackCheck$qg4Word ; Stack overflow check (AX)

push 666h
; Note that the arguments are passed from left to right.

push 77h;'w'
mov di, offset aHelloSailor ; "Hello, Sailor!"
; DI contains a pointer to the string "Hello, Sailor!"

push ds

push di

; The FAR pointer is passed, not NEAR-

; that is, both segment and offset of the string.

call MyProc
; The stack is cleared by the called function.

leave
; The function's epilog closes the stack frame.

Xor ax, ax
call @Halt$g4Word ; Halt (Word)
; The program ends!

PROGRAM endp

MyProc proc near ; CODE XREF: PROGRAM+231 p
; IDA hasn't determined the function prototype.
; We'll just have to do this ourselves!

var_100 = byte ptr -100h

; This is a local variable. Since it's located at 0x100 bytes

; above the stack frame, it seems to be an array of 0x100 bytes
; (the maximum string length in Pascal is OxFF bytes).

; It's likely to be the buffer allocated for the string.

arg_0 = dword ptr 4
arg_4 = byte ptr 8
arg_6 = word ptr 0Ah

; The function accepted three arguments.

push bp
mov  bp, sp
; The stack frame is opened.

mov  ax, 100h

call @__StackCheck$g4Word ; Stack overflow check (AX)

; Here, we find out if there are 100 bytes available on the stack,
; which we need for local variables.

sub sp, 100h
; Space is allocated for local variables.



les di, [bp+arg_0]
; The pointer to the rightmost argument is obtained.

push es

push di

; We passed the far pointer to the arg_0 argument,

; with its segment address not even popped from the stack!

lea di, [bp+var_100]
; The pointer to the local buffer is obtained.

push ss
; Its segment address is pushed onto the stack.

push di
; The buffer offset is pushed onto the stack.

push OFFh
; The maximum string length is pushed.

call @$basq$gm6Stringtl4Byte ; Store string

; The string is copied into the local buffer (consequently,

; arg_0 is a string). This way of achieving the goal, however,
; seems a little strange. Why not use a reference?

; Turbo Pascal won't let us -

; the strings are passed by value in Pascal.

» o (

mov di, offset unk_1E18

; A pointer is obtained to the output buffer.
; Here, we need to become acquainted with the output system
; of Pascal - it is strikingly different from the C output

; system. First, the left-side order of pushing arguments

; onto the stack doesn't allow us (without using additional
; tricks) to organize support for procedures that have

; a variable number of arguments.

; But WriteLn is just a procedure with a variable number

; of parameters, isn't it?

; No, it's not a procedure! It's an operator.

; At compile time, the compiler divides it into several

; procedure calls to output each argument separately.

; Therefore, in the compiled code, each procedure takes a fixed
; number of arguments. There will be three of them in our case:

; The first one will be used to output the sum of two numbers
; (accepted by the WriteLongint procedure), the second one
; to output the blank space as a character (WriteChar),

; and the last one to output the string (WriteString).

; In Windows, it's impossible

; to output the string directly into the window and forget about it,

; because the window may require redrawing.
; The operating system doesn't save its contents - this would

; require a big memory space in a graphic environment with a high

; resolution. The code that outputs the string should know how

; to repeat the output on request. If you have ever programmed
; in Windows, you likely remember that all output should be placed
; into the WM_PAINT message handler. Turbo Pascal allows us to treat

; the window under Windows as a console. In this case,
; everything displayed earlier should be stored somewhere.

; Since local variables cease to exist as soon as their procedures

; are executed, they are not suitable for storing the buffer.

; Either the heap or the data segment remains. Pascal uses the latter -



; we've just received the pointer to such a buffer. In addition,

; to boost the output performance,

; Turbo Pascal creates a simple cache. The WriteLingint, WriteChar,

; and WriteString functions merge the results of their activity,

; represented by characters in this buffer. In the end, the call

; of WriteLn follows, which outputs the buffer contents into the window.
; The run-time system track the redrawing of the window,

; and, if necessary, repeats the output

; without involving the programmer.

push ds
push di
; The buffer address is pushed onto the stack.

mov al, [bp+arg_4]
; The type of the arg_4 argument is byte.

xor ah, ah
; The higher byte of the AH register is zeroed.

add ax, [bp+arg_6]

; This summed up arg_4 and arg_6. Since al was previously extended

; to AX, arg_6 has the Word type. (When summing two numbers of different
; types, Pascal extends the smaller number to the size of the larger

; one.) Apart from this, the calling procedure passes the value 0x666

; with this argument, which would not fit in 1 byte.

xor dx, dx
; DX is zeroed...

push dx
; ... and pushed onto the stack.

push ax

; The sum of two left arguments is pushed onto the stack.
push 0O

; One more zero!

call @Write$gm4Text7Longint4Word ; Write(varf; v: Longint; width: Word)
; The WriteLongint function has the following prototype:

; WriteLongint(Text far &, a: Longint, count: Word).

; Text far & - the pointer to the output buffer

; a - the long integer being output

; count - how many variables should be output

; (if zero - one variable)

; Consequently, in our case, we output one variable - the sum of two
; arguments. A small addition - the WriteLongint function doesn't

; follow the Pascal convention, since it doesn't clear the stack

; completely, but leaves the pointer to the buffer on the stack.

; The compiler developers have accepted this solution to achieve

; better performance: If other functions need the pointer to the

; buffer (at least one of them does - WriteLn), why should we pop it,

; then push it back again each time? If you look into the end

; of the WriteLongint function, you'll see RET 6. The function

; pops two arguments from the stack - two words for Longint,

; and one word for count. Such a lovely technical detail! It's

; small, but it can lead to great confusion, especially if a code

; digger is not familiar with the Pascal input\output system!

push 20h ;"'
; The next argument is pushed onto the stack for passing it to






slight, and many compiler developers forsake speed for simplicity of implementation. If performance is crucial, we can
use the inline functions.

This reasoning likely will interest programmers, but code diggers are worried about the reconstruction of function
prototypes, not about performance. Is it possible to find out what arguments the fastcall function receives without
analyzing its code (that is, looking only at the calling function)? The popular answer, "No, because the compiler passes
arguments via the most ‘convenient’ registers," is wrong, and the speaker clearly shows his or her ignorance of the
compilation procedure.

In compiler development, there is a translation unit: Depending on the implementation, the compiler may translate the
program code in its entirety, or it may translate each function separately. The first type incurs substantial overhead,
since we need to store the entire parse tree in memory. The second type saves in the memory only each function's
name and reference to the code generated for it. Compilers of the first type are rare; I've never come across (although |
have heard about) such a C\C++ compiler for Windows. Compilers of the second type are more efficient, require less
memory, and are easier to implement; they are good in all respects except for their intrinsic inability to perform
pass-through optimization. Each function is optimized individually and independently. Therefore, the compiler can't
choose the optimal registers for passing arguments, since it doesn't know how they're handled by the called function.
Functions translated independently should follow conventions, even if this isn't advantageous.

Thus, knowing the "handwriting" of the particular compiler, we can reconstruct the function prototype with minimal
effort.

Borland C ++ 3.x passes arguments via the AX(AL), DX(DL), and BX(BL) registers. When no free registers remain,
arguments are pushed onto the stack from left to right. Then they're popped by the called function (stdcall).

The method of passing arguments is rather interesting. The compiler doesn't assign each arguments its "own"
registers; instead, it provides each argument easy access to the "pile" of candidates stacked in order of preference.
Each argument takes as many registers from the pile as it needs, and when the pile is exhausted, the stack is used.
The only exception is arguments of the long int type, which are always passed via DX:AX (the higher word is passed via
DX) or, if that's impossible, via the stack.

If each argument occupies no more than 16 bits (as is often the case), the first argument from the left is placed into
AX(AL), the second one into DX(DL), and the third one into BX(BL). If the first argument from the left is of the long int
type, it takes two registers from the pile at once: DX:AX. The second argument gets the BX(BL) register. Nothing
remains for the third argument, so it is passed via the stack. When long int is passed as the second argument, it is sent
to the stack, since the AX register it needs is already occupied by the first argument. In this case, the third argument is
passed via DX. Finally, if long int is the third argument from the left, it goes onto the stack. The first two arguments are
passed via AX(AL) and DX(DL), respectively.

Floating-point values and far pointers are always passed via the main stack (not via the stack of the coprocessor, as
common sense would tell us).



Table 2: The Fastcall Preferences of Borland C++ 3.x for Passing Arguments

Preferences
Argument type
1St argument an argument 3rd argument

Char AL DL BL

Int AX DX BX

Long int DX:AX DX:AX DX:AX

Near pointer AX DX BX

Far pointer Stack Stack Stack

Float Stack Stack Stack
Double Stack Stack Stack

Microsoft C++ 6.0 also behaves much like the Borland C++ 3.x compiler, except that it changes the order of
preferences of the candidates for passing pointers — namely, the BX register has priority. This is logical because the
early 80x86 micro-processors didn't support indirect addressing via AX or DX. In those microprocessors, the value
passed to the function had to be moved to BX, Sl, or DI.

Table 3: The Fastcall Preferences of Microsoft C++ 6.0 for Passing Arguments

Preferences
Argument type
15;t argument 2nd argument 3rd argument

Char AL DL BL

Int AX DX BX

Long int DX:AX DX:AX DX:AX

Near pointer BX AX DX

Far pointer Stack Stack Stack

Float Stack Stack Stack
Double Stack Stack Stack

Borland C++ 5.x is similar to its predecessor, Borland C++ 3.x. However, it prefers the CX register to BX and places
arguments of int and long int types in any suitable 32-bit registers, not in DX:AX. This is the result of converting the
compiler from 16-bit to 32-bit mode.



Table 4: The Fastcall Preferences of Borland C++ 5.x for Passing Arguments

Preferences

Argument type

1St argument an argument 3rd argument
Char AL DL CL
Int EAX EDX ECX
Long int EAX EDX ECX
Near pointer EAX EDX ECX
Far pointer Stack Stack Stack
Float Stack Stack Stack
Double Stack Stack Stack

Microsoft Visual C++ 4.x—6.x, when possible, passes the first argument from the left via the ECX register, the second
one via the EDX register, and the rest via the stack. Floating-point values and far pointers are always transferred via the
stack. The argument of the __int64 type (a nonstandard, 64-bit integer introduced by Microsoft) is always passed via
the stack.

If __int64 is the first argument from the left, the second argument is passed via ECX, and the third one via EDX. If
__int64 is the second argument, the first one is passed via ECX, and the third one via EDX.

Table 5: The Fastcall Preferences of Microsoft C++ 4.x-6x for Passing Arguments

Preferences
Argument type
1St argument an argument 3rd argument

Char CL DL Not used
Int ECX EDX Not used
__int64 Stack Stack Stack
Long int ECX ECX Not used
Near pointer ECX EDX Not used
Far pointer Stack Stack Not used
Float Stack Stack Not used
Double Stack Stack Not used

Watcom C greatly differs from compilers from Borland and Microsoft. In particular, it doesn't support the fastcall
keyword. (This results in serious compatibility problems.) By default, Watcom always passes arguments via registers.
Instead of the commonly used "pile of preferences," Watcom strictly assigns a certain register to each argument: The
EAX register is assigned to the first argument, EDX to the second one, EBX to the third one, and ECX to the fourth one.
If it is impossible to place an argument into the specified register, this argument, and all other arguments to the right of
it, are pushed onto the stack! In particular, by default, the float and double types are pushed onto the stack of the main
processor, which spoils the whole thing.



Table 6: The Default Method Used by Watcom for Passing Arguments

Assignment
Argument type
1St argument an argument 3rd argument 4th argument
Char AL DL BL CL
Int EAX EDX EBX ECX
Long int EAX EDX EBX ECX
Near pointer ECX EDX EBX ECX
Far pointer Stack Stack Stack Stack
CPU stack CPU stack CPU stack CPU stack
Float
FPU stack FPU stack FPU stack FPU stack
CPU stack CPU stack CPU stack CPU stack
Double
FPU stack FPU stack FPU stack FPU stack

The programmer may arbitrarily set his or her own order for passing arguments using the aux pragma, which has the
following format: *pragma aux function_name parm [the list of registers]. The list of registers allowable for each type of

argument is given in the following table.

Table 7: The Registers for Passing Arguments in Watcom C

Argument type

Permitted registers

Char EAX EBX ECX EDX ESI EDI
Int EAX EBX ECX EDX ESI EDI
Long int EAX EBX ECX EDX ESI EDI
Near pointer EAX EBX ECX EDX ESI EDI
DX:EAX CX:EBX CX:EAX CX:ESI DX:EBX DI:EAX
CX:EDI DX:ESI DI:EBX SLEAX CX:EDX DX:EDI
DI:ESI SI:EEBX BX:EAX FS:ECX FS:EDX FS:EDI
Far pointer FS:ESI FS:EBX FS:EAX GS:ECX GS:EDX GS:EDI
GS:ESI GS:EBX GS:EAX DS:ECX DS:EDX DS:EDI
DS:ESI DS:EBX DS:EAX
ES:ECX ES:EDX ES:EDI
ES:ESI ES:EBX ES:EAX
Float 8087 ?7?7? ?7?7? ??7? ??7? ?7?7?
8087 EDX:EAX ECX:EBX ECX:EAX ECX:ESI EDX:EBX
Double EDI:EAX ECX:EDI EDX:ESI EDI:EBX
ESILEAX ECX:EDX
EDX:EDI EDIL:ESI ESI:EBX EBX:EAX

I'll give a few explanations. First, arguments of the char type are passed via 32-bit registers, not via 8-bit ones. Second,
the unexpectedly large number of possible pairs of registers for passing far pointers is striking. Third, the segment




address may be passed not only via segment registers, but also via 16-bit, general-purpose registers.

Floating-point arguments can be passed via the stack of the coprocessor — just specify 8087 instead of the register
name and compile the program using the -7 key (or -fpi, or -fpu87) to inform the compiler that the coprocessor's
instructions are allowed. The documentation on Watcom says that arguments of the double type can also be passed
via pairs of 32-bit, general-purpose registers, but | have failed to force the compiler to generate such a code. Maybe |
don't know Watcom well enough, or perhaps an error occurred. | also have never encountered any program in which
floating-point values have been passed via general-purpose registers. However, these are subtleties.

Thus, when analyzing programs compiled using Watcom, remember that arguments can be passed via practically any
register.

Identifying arguments sent to and received from registers Both the called and calling functions must follow conventions
when passing arguments via registers. The compiler should place arguments into the registers where the called
function expects them to be, rather than into those "convenient” for the compiler. As a result, before each function that
follows the fastcall convention, a code appears that "shuffles" the contents of registers in a strictly determined manner.
The manner depends on the specific compiler. The most popular methods of passing arguments were considered
above. If your compiler isn't in the list (which is quite probable — compilers spring up like mushrooms after a rain),
experiment to figure out its "nature" yourself or consult its documentation. Developers rarely disclose such subtleties
— not because of the desire to keep it secret, but because the documentation for each byte of the compiler wouldn't fit
into a freight train.

Analyzing the code of the calling function does not help us recognize passing arguments via registers unless their
initialization is evident. Therefore, we need to analyze the called function. In most cases, the registers saved on the
stack just after the function receives control did not pass arguments, and we can strike them off the list of "candidates.
Among the remaining registers, we need to find the ones whose contents are used without obvious initialization. At
first, the function appears to receive arguments via just these registers. Upon closer examination, however, several
issues emerge. First, implicit arguments of the function (the this pointer, pointers to the object virtual tables, etc.) often
are passed via registers. Second, an unskilled programmer might believe the value should be equal to zero upon its
declaration. If he or she forgets about initialization, the compiler places the value into the register. During program
analysis, this value might be mistaken for the function argument passed via the register. Interestingly, this register
accidentally may be explicitly initialized by the calling function. The programmer, for example, could call some function
before this one, whose return value (placed into EAX by the compiler) wasn't used. The compiler could place the
uninitialized variable into EAX. When, upon the normal completion of the execution, the function returns zero,
everything may work. To catch such a bug, the code digger should analyze the algorithm and figure out whether the
code of the successful function's completion is really placed into EAX, or if the variables were overwritten.

If we discard "clinical" cases, passing arguments via registers doesn't strongly complicate the analysis.

A practical investigation of the mechanism of passing arguments via registers Let's consider the following example.
Note the conditional compilation directives used for compatibility with various compilers:

Listing 84: Passing Arguments via Registers

#include <stdio.h>
#include <string>

#if defined(__BORLANDC_) || defined (_ MSC_VER)
/I This branch of the program should be compiled only by Borland C++
/I or Microsoft C++ compilers that support the fastcall keyword.

__ fastcall
#endif

/I Next is the MyFunc function, which has various types of arguments
/I for demonstrating the mechanism of passing them.

MyFunc(char a, int b, long int ¢, int d)

{

#if defined(__ WATCOMC_)
/I This branch is specially intended for Watcom C.






var_4 = byte ptr -4

arg_0 = dword ptr 8

arg_4 = dword ptr OCh

; Only two arguments are passed to the function

; via the stack, and IDA successfully recognized them.

push ebp
mov ebp, esp
sub esp, 8

; This allocates 8 bytes for local variables.

mov [ebp+var_8], edx

; The EDX register was not explicitly initialized before its

; contents were loaded into the var_8 local variable.

; Therefore, it is used for passing arguments!

; This program was compiled by Microsoft Visual C++,

; and, as you probably know, it passes arguments via

; the ECX:EDX registers. Therefore, we can infer that we're
; dealing with the second-from-the-left argument

; of the function. Somewhere below, we'll probably come across
; areference to ECX - to the first-from-the-left argument

; of the function (although not necessarily -

; the first argument might not be used by the function).

mov [ebp+var_4], cl

; Actually, the reference to CL kept us from waiting long for it.
; Since the argument of the char type is passed via CL,

; the first function argument is probably char.

; However, the function simply may be accessing

; the lower byte of the argument (for example, of the int type).
; However, looking at the code of the calling function, we can
; make sure that only char, not int, is passed to the function.

; Incidentally, note the stupidity of the compiler - was it really
; necessary to pass arguments via registers to send them

; immediately into local variables? After all, addressing

; the memory negates all the benefits of the fastcall convention!
; It's even hard to describe such a call as "fast."

movsx eax, [ebp+var_4]

; EAX is loaded with the first-from-the-left argument passed
; via CL, which is of the char type with a signed extension to
; a double word. Hence, it's signed char (that is, char,

; by default, for Microsoft Visual C++).

add eax, [ebp+var_8]
; The contents of EAX are added with the argument second from the left.

add eax, [ebp+arg_0]
; The argument third from the left, passed via the stack,
; is added to the previous sum...

add eax, [ebp+arg_4]
; ... and all this is added to the fourth argument,
; also passed via the stack.

mov  esp, ebp
pop ebp
; The stack frame is closed.

retn 8
; We cleared up the stack,















; argument of the int type, placed into EDX, is passed by reference.

call MyFunc

; The preliminary function prototype looks like this:

; MyFunc(char *a, int *b, int ¢)

; Where did the ¢ argument come from? Do you remember the code
; in which EAX was pushed onto the stack? Neither before nor after
; the function call was it popped out! To be sure of this,

; we need to see how many bytes the called function removes

; from the stack. Another interesting fact is that the values

; returned by the strlen function were not assigned to

; local variables, but were directly passed to MyFunc.

; This suggests that the source code of the

; program looked like this:

; MyFunc(strlen("1"),&var_4,strlen("333"));

; This is not necessarily the case - the compiler might optimize the

; code, throwing out the local variable if it isn't used anymore.

; However, judging from the code of the called function, the

; compiler works without optimization. In addition, if the values

; returned by the strlen functions are used only once as arguments
; of MyFunc, assigning them to local variables simply

; obscures the essence of the program. Moreover, for a code digger,
; it's more important to understand the algorithm of a program

; than to restore its source code.

push eax
push offset asc_406038 ; "%x\n"
call _printf
add esp, 8

pop esi
mov  esp, ebp

pop ebp
; The stack frame is closed.

retn
main endp
MyFunc proc near ; CODE XREF: main+2Et p
var_8 = dword ptr -8
var_4 = byte ptr -4
arg_0 = dword ptr 8

; The function accepts one argument.
; Hence, EAX has been pushed onto the stack.

push ebp
mov ebp, esp
; The stack frame is opened.

sub esp, 8
; This allocated 8 bytes for local variables.

mov  [ebp+var_8], edx

; Since EDX is used without explicit initialization,

; the function argument second from the left is passed

; via it (according to the fastcall convention of the Microsoft

; Visual C++ compiler). Having analyzed the code of the calling






mov [ebp+var_4], 2
; A value of 2 is placed into a local variable.

push offset a333 S
; A pointer to the "333" string is passed to the function.

call _strlen
pop ecx
; The argument is popped from the stack.

push eax

; Here we are either passing the value

; returned by the strlen function

; to the following function as the stack argument,

; or we are temporarily saving EAX onto the stack.

; (Later, it will become clear that the latter assumption is true.)

push offset al ;S
; The pointer to the AL string is passed to the strlen function.

call _strlen
pop ecx
; The argument is popped from the stack.

lea edx, [ebp+var_4]
; The offset of the var_4 local variable is loaded into EDX.

pop ecx
; Something is popped from the stack, but what exactly? Scrolling

; the screen of the disassembler upward, we find that EAX was pushed
; last onto the stack and contained the value returned by the strlen

; ("333") function. It is now located in the ECX register.

; (Borland passes the argument second from the left via it.)

; Incidentally, a note for fastcall fans: fastcall

; doesn't always provide the anticipated call acceleration -

; Intel 80x86 doesn't have enough registers, and they continually

; need to be saved onto the stack. Passing an argument via

; the stack would require only one reference to memory: PUSH EAX.

; Here we have two - PUSH EAX and POP ECX!

call MyFunc

; When reconstructing the function prototype, don't forget about
; the EAX register - it's not initialized explicitly,

; but it stores the value returned by the last call of strlen.

; Since the Borland C++ 5.x compiler

; uses the preferences EAX, EDX, and ECX, we can conclude

; that the function argument first from the left is passed to EAX,
; and the other two arguments - to EDX and ECX, respectively.

; Note that Borland C++, unlike Microsoft Visual C++,

; doesn't handle arguments in the order in which they appear in the list.
; Instead, it computes the values of all functions, “pulling" them

; out from right to left, then proceeds to variables and constants.
; This stands to reason: Functions change the values of many

; general-purpose registers. Until the last function is called,

; the passing of arguments via registers should not begin.

push eax
push offset asc_407074 ; format
call _printf
add esp, 8

Xor eax, eax






mov [esp+0Ch+var_C], 2
; A value of 2 is placed into the local variable.

mov  eax, offset a333; "333"

call strlen_

; Note that Watcom passes the pointer to the string
; to the strlen function via the register!

mov  ecx, eax
; The value returned by the function is copied into the ECX register.
; Watcom knows that the next call of strlen won't spoil this register!

mov eax, offset al ;U
call strlen_

and eax, OFFh
; Since strlen returns the int type, here we have
; an explicit type conversion: int -> char.

mov ebx, esp
; EBX is loaded with the pointer to the var_C variable.

call MyFunc

; Which arguments were passed to the function?

; EAX (probably the leftmost argument), EBX (explicitly

; initialized prior to calling the function), and probably ECX
; (although this is not necessarily the case).

; ECX might contain a register variable, but in that case

; the called function should not access it.

push eax
push offset asc_42000A ; "%x\n"

call printf_
add esp, 8
add esp, 4

; And they say Watcom is an optimizing compiler!
; It can't even unite two instructions into one!

pop ecx
pop ebx
retn
main_ endp
MyFunc proc near ; CODE XREF: main_+331 p
push 4
call _ CHK

; The stack is checked.

and eax, OFFh

; The 24 higher bits are zeroed repeatedly. It would not be bad
; if Watcom were more certain about where to perform this

; operation - in the called function or in the calling one.

; However, such doubling simplifies the reconstruction

; of the function prototypes.

add eax, [ebx]
; EAX of type char, now extended to int, is added with the
; variable of the int type passed by reference via the EBX register.









An interesting feature of the coprocessor is support for integer calculations. | don't know of any compiler that uses this
capability, but sometimes it's used in assembly inserts; therefore, it's unwise to neglect learning the integer
coprocessor instructions.

The double and long double types occupy more than one word, and transferring them via the CPU stack takes several
iterations. As a result, we can't always determine the type and number of arguments passed to the called function by
analyzing the code of the calling function. Instead, investigate the algorithm of the called function. Since the
coprocessor can't determine the type of the operand located in the memory (that is, the coprocessor doesn't know
how many bytes it occupies), a separate instruction is assigned to each type. The assembler syntax hides these
distinctions, allowing the programmer to ignore the subtleties of implementation. (Nevertheless, some people say that
the assembler is a low-level language.) Few people know that FADD [float] and FADD [double] are different machine
instructions having the opcodes 0xD8 ??000??? and OXDC ??0007???, respectively. Analyzing the disassembled listing
doesn't give us any information on the floating-point types; to obtain this information, we need to get down to the
machine level and sink our teeth into hexadecimal dumps of instructions.

presents the opcodes of the main coprocessor instructions that work with memory. Note that performing
arithmetic operations directly over floating-point values of the long double type is impossible; they must first be loaded
onto the coprocessor stack.

Table 10: The Opcodes of the Main Coprocessor Instructions

Type
Instruction
Float Double Long double

FLD 0xD9 ??7000??? 0xDD ??000??? 0xDB ??101???
FSTP 0xD9 ??0117?? 0xDD ??0117?7?7? O0xDB ??1117??7?
FST 0xD9 ?7010??? 0xDD ??010??? None

FADD 0xD8 ??0007?? 0xDC ??000?7?7? None

FADDP O0xDE ??000??? O0xDA ??000??? None

FSUB 0xD8 ??1007?? 0xDC ??100?7?7? None

FDIV 0xD8 ??110??? 0OxDC ??110??? None

FMUL 0xD* ??001?7?? 0xDC ??001??? None

FCOM 0xD8 ??7010??? 0xDC ??010?7?? None

FCOMP 0xD8 ?7011??? 0xDC ??011??? None

(The second byte of the opcode is presented in binary form. The ? character denotes any bit.)

A note on floating-point types of the Turbo Pascal language Since the C language is machine-oriented, its
floating-point types coincide with the coprocessor floating-point types. The main floating-point type of Turbo Pascal is
Real; it occupies 6 bytes, which is not "native” to the computer. Therefore, for calculations carried out using the
coprocessor, Real is programmatically converted to the Extended type (long double in terms of C). This takes up the
lion's share of the performance. Unfortunately, the built-in mathematical library, intended to replace the coprocessor,
does not support other types. When a "live" coprocessor is available, pure coprocessor types — Single, Double,
Extended, and Comp — appear that correspond to float, double, long double, and __int64.

The mathematical library functions that provide support for floating-point calculations receive floating-point arguments
from the registers. The first argument from the left is placed into AX, BX, DX; the second argument, if there is one, is
placed into CX, SI, DI. The system functions that implement the interface to the processor (in particular, the functions
for converting the Real type into the Extended type) receive arguments from registers and return the result via the
coprocessor stack. Finally, the application functions and procedures receive floating-point arguments from the CPU
stack.



Depending on the settings of the compiler, the program may be compiled either using the built-in mathematical library
(the default), or by employing direct calls of the coprocessor instructions. (This is the /N$+ key.) In the first case, the
program doesn't use the coprocessor's capabilities, even though it's installed in the computer. In the second case, if
the coprocessor is available, the compiler uses its computational capabilities; if the coprocessor isn't available, any
attempt to call a coprocessor instruction results in the generation of the int 0x7 exception by the main processor. This
will be caught by the software coprocessor emulator, the same thing as the built-in library supporting floating-point
calculations.

Now that you have a general outline of how floating-point arguments are passed, you are burning with the desire to
see it "live," right? To begin with, let's consider a simple example.

Listing 92: Passing Floating-Point Arguments to a Function

#include <stdio.h>

float MyFunc(float a, double b)
{
#if defined (_ WATCOMC_ )
#pragma aux MyFunc parm [8087];
/I To be compiled using the -7 key
#endif

return a+b;

main()

{
printf("%f\n", MyFunc(6.66, 7.77));

The disassembled listing of this code, compiled with Microsoft Visual C++, should look as follows:

Listing 93: The Disassembled Code for Passing Floating-Point Arguments

main proc near ; CODE XREF: start+Afl p

var_8 = gword ptr -8
; A local variable, this is likely to occupy 8 bytes.

push ebp
mov ebp, esp
; The stack frame is opened.

push 401F147Ah

; Unfortunately, IDA can't represent an operand as a floating-point
; number. Besides which, we can't determine

; whether or not this number is floating-point.

; It can be of any type: either int or a pointer.

push OE147AE14h

push 40D51EB8h

; A draft of the prototype looks like this:
; MyFunc(int a, int b, int c)

call MyFunc

add esp, 4

; Here we go! Only one machine word is taken from the stack,
; whereas three words are pushed there!

fstp [esp+8+var_8]
; A floating-point number is pulled from the coprocessor stack.
; To find out which one, we need to press <ALT>+<0O>,



; select Text representation from the pop-up menu,

; choose the Number of opcode bytes item, and enter

; the number of characters for opcode instructions (4, for example).
; To the left of FSTP, its machine representation -

; DD 1C 24 - appears. Using Table 10, we can determine the data
; type with which this instruction works. It's double.

; Therefore, the function has returned a floating-point value

; via the coprocessor stack.

; Since the function returns floating-point values, it's possible

; that it receives them as arguments. We can't confirm this

; assumption without carrying out an analysis of MyFunc.

push offset aF ; "%f\n"

; A pointer is passed to the format specification string,

; which orders the printf function to output one floating-point number.
; But we're not placing it in the stack!

; How can this be? Let's scroll the disassembler window

; upward while thinking over the ways of solving the problem.

; Closely examining the FSTP [ESP+8+var_8] instruction,

; let's figure out where it places the result of its work.

; IDA has determined var_8 as qword ptr-8. Therefore, [ES+8-8] is
; the equivalent of [ESP] - that is, the floating-point variable

; Is pushed directly onto the top of the stack.

; And what's on the top? Two arguments that were passed

; to MyFunc and not popped off the stack.

; What an artful compiler! It hasn't bothered to create

; @ local variable, and it used the function arguments

; to temporarily store data!

call _printf
add esp, 0Ch
; Three machine words are popped off the stack.

pop ebp
retn
main endp
MyFunc proc near ; CODE XREF: sub_401011+12t p
var_4 = dword ptr -4
arg_0 = dword ptr 8
arg_4 = gqword ptr OCh

; IDA detected only two arguments, while three machine words
; were passed to the function! One of the arguments is likely to
; occupy 8 bytes.

push ebp
mov ebp, esp
; The stack frame is opened.

push ecx

; No, this is not saving ECX - it's allocating memory for
; @ local variable, since the var_4 variable is

; Where the saved ECX is located.

fld [ebp+arg_0]

; The floating-point variable at the [ebp+8] address

; (the leftmost argument),

; Is pushed onto the coprocessor stack.

; To learn the type of this variable, let's look at opcode









Listing 95: Passing Floating-Point Values Using Turbo Pascal

USES WINCRT;

Procedure MyProc(a:Real);
begin

WriteLn(a);
end;

VAR
a: Real;
b: Real;

BEGIN
a:=6.66;
b:=7.77;
MyProc(a+b);
END.

Now, we'll compile it without coprocessor support. (This is the default.)

Listing 96: The Disassembled Code for Passing Floating-Point Values

PROGRAM proc near

call INITTASK
call @__Systemlnit$qv ; __ Systemilnit (void)
; The System unit is initialized.

call @__ WINCRTInit$qv ; _ WINCRTInit(void)
; The WINCRT unit is initialized.

push bp
mov  bp, sp
; The stack frame is opened.

Xor ax, ax
call @__StackCheck$g4Word ; Stack overflow check (AX)
; This checks if there are at least O free bytes in the stack.

mov  word_2030, 0EC83h

mov  word_2032, 0B851h

mov  word_2034, 551Eh

; A variable of the Real type is initialized.

; We know that it's Real

; only from the source code of the program.

; It's impossible to visually distinguish this series

; of instructions from three variables of the Word type.

mov  word_2036, 3D83h

mov  word_2038, 0D70Ah

mov  word_203A, 78A3h

; Another variable of the Real type is initialized.
mov  ax, word_2030

mov  bx, word_2032

mov  dx, word_2034

mov  cx, word_2036

mov  si, word_2038

mov  di, word_203A

; Two variables of the Real type are passed via registers.



call @$brplu$g4Realtl ; Real(AX:BX:DX)+= Real(CX:SI:Dl)
; Fortunately, IDA recognized the addition operator

; in this function. It has even prompted us as to its prototype.
; If IDA hadn't helped us, it would be difficult to understand

; what this long and intricate function does.

push dx
push bx
push ax
; The returned value is passed to the MyProc procedure via
; the stack. Consequently, the MyProc prototype looks like this:
; MyProc(a:Real).

call MyProc

pop bp
; The stack frame is closed.

XOr ax, ax
call @Halt$g4Word ; Halt(Word)

; The program's execution is halted.

PROGRAM endp

MyProc proc near ; CODE XREF: PROGRAM+5C1 p
arg_0 =word ptr 4
arg_2 = word ptr 6
arg_4 =word ptr 8

; The three arguments passed to the procedure,
; as we have already clarified, represent three "sections"”
; of one argument of the Real type.

push bp
mov  bp, sp
; The stack frame is opened.

Xor ax, ax
call @__StackCheck$g4Word ; Stack overflow check (AX)
; Are there 0 bytes in the stack?

mov di, offset unk_2206
push ds
push di

; The pointer to the string output buffer is pushed onto the stack.

push [bp+arg_4]
push [bp+arg_2]
push [bp+arg_O]
; All three received arguments are pushed onto the stack.

mov  ax, 11h
push ax
; The output width is 17 characters.

mov  ax, OFFFFh
push ax
; The number of digits after the point is maximal.

call @Writesgm4Text4RealdWordt3
; Write(var f; v: Real; width, decimals: Word)






faddp st(1), st

; Two numbers of the Extended type that are located on the top
; of the coprocessor stack are added;

; the result is saved on the same stack.

call @Real$q8Extended

; Extended is converted to Real.

; The argument is passed via the coprocessor stack
; and returned into the AX, BX, and DX registers.

push dx

push bx

push ax

; The AX, BX, and DX registers contain a value of the Real type.
; Therefore, the procedure prototype looks like this:

; MyProc(a:Real);

call MyProc
pop bp
Xor ax, ax

call @Halt$g4Word ; Halt(Word)
PROGRAM endp

MyProc proc near ; CODE XREF: PROGRAM+6D1 p
arg_0 =word ptr 4
arg_2 = word ptr 6
arg_4 =word ptr 8

; As we already know, these three arguments are actually
; one argument of the Real type.

push bp
mov  bp, sp
; The stack frame is opened.

Xor ax, ax
call @__StackCheck$g4Word ; Stack overflow check (AX)
; Checking for stack overflow

mov di, offset unk_2396

push ds

push di

; The pointer to the string output buffer is pushed onto the stack.

mov  ax, [bp+arg_0]

mov  bx, [bp+arg_2]

mov  dx, [bp+arg_4]

call @Extended$g4Real

; Real is converted to Extended.

mov  ax, 17h
push ax
; The output width is 0x17 characters.

mov  ax, OFFFFh

push ax

; This is for the number of digits after the decimal point.
; Everything we have is to be outputted.






Listing 99: The Disassembled Code for Passing the this Implicit Argument

main proc near ; CODE XREF: start+AF! p
push esi
; ESI is saved in the stack.

push 1
call ??2@YAPAXI@Z ; operator new(uint)
; This allocates 1 byte for the object instance.

mov  esi, eax
; ESI contains the pointer to the object instance.

add esp, 4
; An argument is popped off the stack.

mov  ecx, esi

; Via ECX, the this pointer is passed to the demo function.

; As you may remember, the Microsoft Visual C++ compiler uses
; the ECX register to pass the first argument of the function.

; In this case, the this pointer is just that argument.

; The Borland C++ 5.x compiler would pass this via

; the EAX register, since this compiler gives it

; the greatest preference. (See Table 4.)

push 1

; The explicit argument of the function is pushed onto the stack.
; If this was the fastcall function, this argument

; would have been placed into the EDX register.

; It turns out that we are dealing with the type of the default

; calling convention.

call Demo

push 2
; The rightmost argument is pushed onto the stack.

push 1
; The argument second from the right is pushed onto the stack.

push esi

; The this implicit argument is pushed onto the stack.

; Such a method of passing arguments indicates that an explicit
; conversion of the function type to stdcall or cdecl

; has taken place. Scrolling the disassembler screen downward,
; we can see that the stack is cleared by the called function.

; Therefore, it complies with the stdcall convention.

call demo_2

push 3

push

push 1

push esi

call sub_401020

add esp, 10h

; If a function clears the stack up after completion, it has

; the default type or cdecl. Passing the this pointer via the stack
; allows us to think that the second assumption is correct.

Xor eax, eax
pop esi






The value returned by a function is traditionally a value returned by the return operator. However, this statement is only
the tip of the iceberg, and doesn't give a complete picture of the functions' interactions. The following example, taken
from real program code, illustrates this.

Listing 102: Returning a Value via an Argument Passed by Reference

int xdiv(int a, int b, int *c=0)

{
if ('b) return -1;
if (¢) c[0]=a % b;
return a/ b;

}

The xdiv function returns the result of integer division of the a argument by the b argument, but it also assigns the
remainder to the ¢ variable, passed to the function by reference. How many values has the function returned? Why is it
worse or less permissible to return a result by reference than by the classical return?

Popular editions tend to simplify the problem of identifying the value returned by a function, considering one case that
uses the return operator. In particular, Matt Pietrek, in his book "Windows 95 System Programming Secrets," follows
this approach, leaving all other options out of the frame. Nevertheless, we will consider the following mechanisms:

B Returning values using the return operator (via a register or coprocessor stack)
B Returning values via arguments passed by reference

B Returning values via the heap

B Returning values via global variables

B Returning values via CPU flags

"Returning values via the disk drive and memory-mapped files" could be included in this list, but that's beyond the topic
of discussion. (However, if you consider a function as a "black box" with an input and an output, the result of the
function's work written into a file is actually the value returned by the function.)

Returning values using the return operator According to convention, the value returned by the return operator is placed
into the EAX register (AX in 16-bit mode). If the result exceeds the register's bit capacity, the higher 32 bits of an
operand are loaded to EDX. (In 16-bit mode, the higher word is loaded to DX.)

In most cases, float results are returned via the coprocessor stack. They also may be returned via the EDX:EAX
registers (DX:AX in 16-bit mode).

If a function returns a structure that consists of hundreds of bytes, or an object of similar size, then neither the registers
nor the coprocessor stack will be sufficient. This is true for results larger than 8 bytes.

If there is no room for the return value in the registers, then the compiler, without telling the programmer, passes an
implicit argument (the reference to the local variable storing the return result) to the function. Thus, the functions struct
mystruct MyFunc (int a, int b) and void MyFunc (struct mystruct *my, int a, int b) are compiled in nearly identical code, and it
is impossible to extract the original prototype from the machine code.

Microsoft Visual C++ is the only one that gives a clue. In this case, it returns the pointer to the variable being returned,;
the reconstructed prototype looks like struct mystruct* MyFunc (struct mystruct* my, int a, int b). It seems strange that the
programmer, despite having just passed the argument to the function, would return the pointer to the argument. In this
situation, Borland C++ returns a void result, erasing the distinction between an argument returned by value and an
argument returned by reference. However, the "original prototype" asserts that a function returns a value, when it
actually returns a reference — rather like seeing a cat and calling it a mouse.

A few words about identifying the returned value are necessary. If a function explicitly stores a value in the EAX or ED
ister (AX or DX in 16-bit mode) and terminates its execution, the value's type can be determined roughly by

ﬁand . If the registers are left undefined, the most likely result is a void-type value (i.e., nothing will be returned). An

analysis of the calling function will produce more accurate information about how the called function accesses the



EAX [EDX] register (AX [DX] in 16-bit mode). For example, char Types typically address the lower half of the EAX [AX]
register (i.e., the AL register), or zero the higher bytes of the EAX register using the logical AND operation. It would
seem that, if the calling function doesn't use the value left by the called function in the EAX [EDX] registers, its type is
void. However, this assumption is incorrect. Programmers often ignore the returned value, confusing code diggers.

Table 11: The Mechanisms for Returning Values Using the Return Operator (16-Bit Compilers)

Type (Length)

Returned via

1 byte AL or AX

2 bytes AX

4 bytes DX:AX

Real DX:BX:AX

Float DX:AX or Coprocessor stack
Double Coprocessor stack

Near pointer AX

Far pointer DX:AX

More than 4 bytes

Implicit argument by reference

Table 12: The Mechanisms for Returning Values Using the Return Operator (32-Bit Compilers)

Type (Length)

Returned via

1 byte AL or AX or EAX

2 bytes AX or EAX

4 bytes EAX

8 bytes EDX:EAX

Float Coprocessor stack or EAX
Double Coprocessor stack or EDX:EAX

Near pointer

EAX

More than 8 bytes

Implicit argument by reference

The next example shows the mechanism used to return the main value types.

Listing 103: Returning the Main Value Types

#include <stdio.h>
#include <malloc.h>

/I A demonstration of returning a value of a char-type variable

/I by the return operator
char char_func (char a, char b)

return a+b;







; The arg_0 and arg_4 arguments, extended to int, are added
; and saved in the EAX register, producing the value to be

; returned by the function. Unfortunately, its type is impossible
; to determine precisely. It could be int or char.

; Of the two options, intis more probable: The sum

; of two char arguments should be placed into int

; for safety reasons; otherwise, an overflow is possible.

pop ebp
retn
char_func endp

int_func  proc near ; CODE XREF: main+29! p
arg_0 = dword ptr 8
arg_4 = dword ptr OCh

push ebp

mov ebp, esp
; The stack frame is opened.

mov eax, [ebp+arg_Q0]
; The value of the arg_0 argument is loaded into EAX.

add eax, [ebp+arg_4]

; The arg_0 and arg_4 arguments are added, and the result
; is left in the EAX register. This is the value returned

; by the function. Its type probably is int.

pop ebp
retn
int_func  endp

inté4_func proc near ; CODE XREF: main+401! p
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = dword ptr 10h
arg_C = dword ptr 14h
push ebp

mov ebp, esp
; The stack frame is opened.

mov eax, [ebp+arg_0]
; The value of the arg_0 argument is loaded into EAX.

add eax, [ebp+arg_8]
; The arg_0 and arg_8 arguments are added.

mov edx, [ebp+arg_4]
; The value of the arg_4 argument is loaded into EDX.

adc edx, [ebp+arg_C]

; The arg_4 and arg_C arguments are added, taking into account

; the carry, which remained after the addition of arg_0 and

; arg_8. Hence, arg_O and arg_4, as well as arg_8 and arg_C,
; are the halves of two arguments of the __int64 type that

; will be summed. Therefore, the result of computation is

; returned via the EDX:EAX registers.



pop ebp
retn
int64_func endp

near_func  proc near ; CODE XREF: main+541 p
var_4 = dword ptr -4
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
; ECXis saved.

push 4 ; Size_t

call _malloc

add esp, 4

; Four bytes are allocated on the heap.

mov [ebp+var_4], eax
; The pointer to the memory just allocated
; Is placed into the var_4 variable.

mov eax, [ebp+arg_0]
; The value of the arg_0 argument is loaded into EAX.

mov  ecx, [eax]
; The int value referenced by the ECX register
; Is loaded into ECX. Hence, the arg_0 argument is an int * type.

mov edx, [ebp+arg_4]
; The value of the arg_4 argument is loaded into EDX.

add ecx, [edX]
; The int value of the memory cell pointed to by the EDX register
; Is added to *arg_0. Hence, the arg_4 argument is a int * type.

mov eax, [ebptvar_4]
; The pointer to the memory block allocated on the heap
; is loaded into EAX.

mov [eax], ecx
; The sum of *arg_0 and *arg_4 is copied onto the heap.

mov eax, [ebptvar_4]

; The pointer to the memory block allocated on the heap is loaded
; into EAX. This is the value to be returned by the function.

; Its prototype might look as follows: int* MyFunc(int *a, int *b)

mov  esp, ebp
pop ebp
retn

near_func endp

main proc near ; CODE XREF: start+AF! p

var_8 = dword ptr -8
var_4 = dword ptr -4



push ebp
mov ebp, esp
; The stack frame is opened.

sub esp, 8
; Space is allocated for local variables.

push esi
push edi
; Registers are saved on the stack.

mov  [ebp+var_4], 666h
; The 0x666 value is placed into var_4, an intlocal variable.

mov [ebp+var_8], 777h
; The 0x777 value is placed into var_8, an intlocal variable.

push 2

push 1

call char_func

add esp, 8

; The char_func(1,2) function is called. As previously
; mentioned, it is impossible to know the type

; of the value it returns. It could return int or char.

movsx esi, al
; The value returned by the function is extended to signed int.
; Hence, it has returned signed char.

push 4

push 3

call int_func

add esp, 8

; The int_func(3,4) function is called. It returns the int value.

add eax, esi
; The contents of ESI are added to the value returned by
; the function.

cdg

; The double word in the EAX register is converted to

; @ quadruple word, then placed into the EDX:EAX register.
; This proves that the value returned by the function

; from int was converted into int64, although the purpose

; of this action is, as yet, unclear.

mov  esi, eax
mov  edi, edx
; The extended quadruple word is copied to the EDI:ESI registers.

push
push
push
push 5

call int64_func

add esp, 10h

; The int64_func(5,6) function is called. It returns a value
; of the__int64 type. Now, the purpose of the extension

; of the previous result becomes clear.

o o O

add esi, eax









mov edx, [ebp+arg_4]
; The value of the arg_4 argument is loaded into the EDX register.

mov [ebp+var_4], edx
; The arg_4 argument is copied to the var_4 local variable.

mov eax, [ebp+var_8]
; The contents of (not the pointer to) the string buffer
; are loaded.

mov edx, [ebp+var_4]

; The value of var_4 is loaded into EDX. Loading

; the EDX:EAX registers before existing the function indicates

; var_4 has the value returned by the function. Unexpectedly,

; the function returns two variables of different types

; into EDX and EAX, and not __int64, which might seem logical

; after a cursory analysis of the program. The second surprise is
; that the char[4] type is returned via the register,

; not via the pointer or the reference. This is fortunate: If the

; structure were declared as struct XT {short int a, char b, char c},
; as many as three variables of two types

; would be returned into the EAX.

mov  esp, ebp
pop ebp
retn

MyFunc endp

main proc near ; CODE XREF: start+AF ! p
var_8 = dword ptr -8
var_4 = dword ptr -4

; These are two local variables of the int type.
; Their type has been determined by calculating their respective sizes.

push ebp
mov ebp, esp
; The stack frame is opened.

sub esp, 8
; Eight bytes are allocated for local variables.

push 666h

; An int argument is passed to the MyFunc function.

; Therefore, arg_4 is of the int type, which wasn't obvious
; from the called function's code - arg_4 easily could

; be the pointer. Hence, the function returns

; an int type into the EDX register.

push offset aHelloSailor ; "Hello, Sailor!"

; A pointer to the string is passed to MyFunc.

; Caution! The string occupies more than 4 bytes; therefore,
; | don't recommend making this example "live."

call MyFunc

add esp, 8

; The MyFunc function is called. Somehow, it modifies
; the EDX and EAX registers. The returned value types
; are already known, so it only remains to make sure

; that the calling function uses them "correctly."






; Here, 0x20 bytes are allocated for local variables.

push 666h
; The rightmost int argument is passed
; to the MyFunc function.

push offset aHelloSailor ; "Hello, Sailor!"
; The second argument from the right (a pointer
; to the string) is passed to the MyFunc function.

lea eax, [ebp+var_20]
; The address of a local variable is loaded into EAX.

push eax

; A pointer is passed to the var_20 variable.

; This argument was not present in the function's prototype!
; Where has it come from? The compiler has inserted it

; to return the structure by value. The previous sentence

; could have been placed in quotation marks to accentuate
; its irony: The structure that will be returned by value

; actually is returned by reference.

call MyFunc
add esp, 0Ch
; The MyFunc function is called.

mov  ecx, [eax]

; The function has loaded into ECX a pointer to the structure

; returned to it by reference. This trick is used only by

; Microsoft Visual C++; most compilers leave the value of EAX
; undefined or equal to zero. In any case, ECX will contain

; the first double word pointed to by the pointer placed in ECX.
; At first glance, this is an element of the int type.

; However, it is unwise to draw hasty conclusions.

mov  [ebp+var_10], ecx
; The contents of ECX are saved in the var_10 local variable.

mov  edx, [eax+4]
; EDXis loaded with the second double word pointed to
; by the EAX pointer.

mov [ebp+var_C], edx

; Itis copied to the var_C variable.

; The second element of the structure likely has the

; inttype as well. A comparison with the source code of the
; program under consideration shows something is wrong.

mov  ecx, [eax+8]
; The third double word using the EAX pointer is loaded, and...

mov [ebp+var_8], ecx

; ...itis copied to var_8. Yet another element of the int type?
; Where are they coming from? The original had one!

; And where is the string?

mov  edx, [eax+0Ch]

mov [ebp+var_4], edx

; Yet another element of the int type is moved from the structure
; into the local variable. This is too much!

mov eax, [ebp+var_4]



; EAX is loaded with the value of the var_4 local variable.

push eax

; The value of var_4 is passed to the printf function.
; The format-specification string shows

; var_4 really has the int type.

lea ecx, [ebp+var_10]
; A pointer to the var_10 is obtained, and...

push ecx

; ...it is passed to the printf function. According to

; the format-specification string, ECX is of the char * type;

; hence, var_10 is the string we are looking for. Intuition

; suggests that var_C and var_8, located below var_10

; (i.e., at higher addresses), also contain strings. The compiler,
; instead of calling strcpy, has decided it would be faster

; to copy the structure that has caused confusion.

; Never be hasty when identifying the types of elements of

; structures! Carefully check how each byte is initialized

; and used. The operations of transfer to local variables alone
; are not informative!

push offset aSX ; "%s %x\n"
call _printf
add esp, 0Ch

mov  esp, ebp

pop ebp
; The stack frame is closed.

retn
main endp
MyFunc proc near ; CODE XREF: main+141 p
var_10 = dword ptr -10h
var_C = dword ptr - OCh
var_8 = dword ptr -8
var_4 = dword ptr -4
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
arg_8 = dword ptr 10h

; Note that three arguments are passed to the function,
; not two, as declared in the prototype.

push ebp
mov ebp, esp

; The stack frame is opened.

sub esp, 10h
; Memory is allocated for local variables.

mov eax, [ebp+arg_4]
; EAX is loaded with the second argument from the right.

push eax
; The pointer to arg_4 is passed to the strcpy function.

lea ecx, [ebp+var_10]



; ECXis loaded with the pointer to the var_10 local variable.

push ecx
; The pointer to the var_10 local variable is passed
; to the strcpy variable.

call strcpy

add esp, 8

; The string passed to the MyFunc function,
; via the arg_4 argument, is copied.

mov edx, [ebp+arg_8]
; EDX is loaded with the value of the rightmost argument
; passed to MyFunc.

mov  [ebp+var_4], edx
; The arg_8 argument is copied to the var_4 local variable.

mov eax, [ebp+arg_0]

; The value of the arg_0 argument is loaded into EAX.

; As you already know, the compiler uses this argument to pass
; a pointer to the local variable without notifying the programmer.
; The function places the structure returned by value

; in this variable.

mov  ecx, [ebp+var_10]

; The contents of the var_10 local variable are loaded into ECX.

; As previously mentioned, a string has been copied to the var_10
; local variable; thus, this is likely double-word copying!

mov [eax], ecx

mov  edx, [ebp+var_C]

mov  [eax+4], edx

mov  ecx, [ebp+var_8]

mov [eax+8], ecx

; Exactly! The var_10 local variable is copied "manually"

; to the *arg_0 local variable, without using strcpy!

; In total, 12 bytes have been copied; hence,

; the first element of the structure looks like this:

; char s0[12]. The source code contained ‘char sO[10]'.

; When the compiler aligned the elements of the structure

; by the addresses that are multiples of four, it placed

; the second element, int x, at the address base+012, creating
; @ "hole" between the end of the line and the beginning of
; the second element. It is not possible to reconstruct

; the structure's actual form by analysing the disassembled
; listing. The only thing that can be stated for sure is that

; the string length sO0 falls in the range of 9 to 12.

mov  edx, [ebp+var_4]

mov  [eax+0Ch], edx

; The var_4 variable, which contains the arg_8 argument,

; is copied into [EAX+0C]. The second element of the structure,
; int X, is at an offset of 12 bytes from the start.

mov eax, [ebp+arg_0]
; The pointer to the arg_0 argument is returned to EAX. This
; argument contains the pointer to the returned structure.

mov  esp, ebp
pop ebp
; The stack frame is closed.












Table 13: The Valid Registers for Returning Function Values in Watcom C

Type Valid registers
AL BL CL DL
1 byte
AH BH CH DH
2 bytes AX CX BX DX SI DI
4 bytes EAX EBX ECX EDX ESI EDI
EDX:EAX ECX:EBX ECX:EAX ECX:ESI EDX:EBX EBX:EAX
8 bytes EDI:EAX ECX:EDI EDX:ESI
EDI:EBX ESI:EAX ECX:EDX
EDX:EDI EDILESI ESI:EBX
Near pointer EAX EBX ECX EDX ESI EDI
DX:EAX CX:EBX CX:EAX CX:ESI DX:EBX DI:EAX
CX:EDI DX:ESI DI:EBX SIEEAX CX:EDX DX:EDI
DI:ESI SI:EBX BX:EAX FS:ECX FS:EDX FS:EDI
Far pointer FS:ESI FS:EBX FS:EAX GS:ECX GS:EDX GS:EDI
GS:ESI GS:EBX GS:EAX DS:ECX DS:EDX DS:EDI
DS:ESI DS:EBX DS:EAX
ES:ECX ES:EDX ES:EDI
ES:ESI ES:EBX ES:EAX
Float 8087 ?2?? ?2?? ?2?? ??? ???
8087 EDX:EAX ECX:EBX ECX:EAX ECX:ESI EDX:EBX
Double EDI:EAX ECX:EDI EDX:ESI EDI:EBX
ESI:EAX ECX:EDX
EDX:EDI EDI:ESI ESI.EBX EBX:EAX

The register or registers used by default are marked in bold. Note that only the size of the returned value can be
determined by the register used. The type of this value cannot be determined directly. In particular, the EAX register
may be used to return an int variable, as well as a structure consisting of four char variables, two char variables, or one
short int variable.

What does this mean? Consider the following example:

Listing 111: Returning a Value via Any Valid Register

#include <stdio.h>

int MyFunc(int a, int b)

{

#pragma aux MyFunc value [ESI]

/I The AUX pragma, along with the value keyword, allows us
/I to define manually the register via which

/I the result will be returned.

/I In this case, the result will be returned via ESI.

return a+b;
}
main()
{

printf("%x\n", MyFunc(0x666, 0x777));









MyFunc

proc near ; CODE XREF: main+25! p

lea ebp, [eax+ecx]
; Arguments are received via the EAX and ECX registers.
; Their sum is returned via EBP.

; This example is artificial,

; but illustrative.

retn
MyFunc endp
main proc near ; CODE XREF: start+AF! p
var_C = dword ptr - 0Ch
var_8 = dword ptr -8
var_4 = dword ptr -4
push ebp

mov ebp, esp
; The stack frame is opened.

sub esp, 0Ch
; Memory is allocated for local variables.

push ebx
push esi
push edi
; The modified registers are saved.

mov
mov

[ebp+var_4], 666h
[ebp+var_8], 777h

; The var_4 and var_8 variables are initialized.

push ebp

push edi

; Are the registers saved, or passed to the function?
; This question cannot be answered yet.

mov eax, [ebp+var_4]

mov  ecx, [ebp+var_8]

; The value of the var_4 variable is loaded into EAX.
; and the value of var_8 is loaded into ECX.

lea edi, [ebp+var_C]
; The pointer to the var_C variable is loaded into EDI.

call

MyFunc

; The MyFunc function is called. It's unclear from the analysis

; of the calling function how the arguments are passed to it:

; via the stack, or via registers.

; Only an analysis of the code of MyFunc confirms that the latter

; assumption is true. Yes, the arguments are passed via registers!

mov

[edi], ebp

; What does this mean? An analysis of the calling function
; can't give an exhaustive answer.

; Only an analysis of the called function suggests

; that it returns the computation result via EBP.

pop edi
pop ebp









lea ecx, [ebp+var_10]
; The pointer to the var_10 local variable, which contains
; the "Hello, Sailor!" string, is loaded into ECX.

push ecx;int

; The pointer to the "Hello, Sailor!" string is passed
; to the Reverse_1 function. IDA has determined

; the type incorrectly: What kind of int has char *?

; However, recalling how the string was copied

; clarifies why IDA made a mistake.

lea edx, [ebp+var_74]
; The pointer to the uninitialized var_74 local variable
; is loaded into ECX.

push edx; char *

; The pointer to the uninitialized char variable s1[100]

; Is passed to the Reverse_1 function. The value 100 was obtained
; by subtracting the offset of the var_74 variable from the offset

; of the var_10 variable, which is next to it and contains

; the "Hello, Sailor!" string: 0x74 - 0x10 = 0x64, which is 100

; in decimal representation. Passing a pointer to the unassigned

; variable suggests that the function will return

; some value in it - something that should be noted.

call Reverse_1
add esp, 8
; The Reverse_1 function is called.

lea eax, [ebp+var_74]
; The pointer to the var_74 variable is loaded into EAX.

push eax

; The pointer to the var_74 variable is passed to the printf

; function. Because the calling function has not initialized this

; variable, it can be assumed that the called function has returned
; its value via the variable. The Reverse_1 function might modify
; the var_10 variable as well, but it is impossible to be certain

; about this before the function's code is studied.

push offset unk_406040

call _printf

add esp, 8

; The printf function is called for the string output.

lea ecx, [ebp+var_74]
; ECXis loaded with the pointer to the var_74 variable, which
; apparently contains the value returned by the Reverse_1 function.

push ecx ; char *

; The pointer to the var_74 variable is passed to the Reverse_2
; function. Reverse_2 also may return its value into the var_74

; variable, may modify the variable, or may not return any value!
; Analyzing the code of the called function will clarify this.

call Reverse_2
add esp, 4
; The Reverse_2 function is called.

lea ecx, [ebp+var_74]
; The pointer to the var_74 variable is loaded into EDX.



push edx

; The pointer to the var_74 variable is passed to the printf function.
; Since the value returned by the function via the EDX:EAX

; registers isn't used, the function may return

; it into the var_74 variable, rather than via

; the registers. However, this is only an assumption.

push offset unk_406044
call _printf

add esp, 8

; The printf function is called.

push 777h
; The 0x777 value of the int type is passed to the Sum function.

push 666h
; The 0x666 value of the int type is passed to the Sum function.

call Sum
add esp, 8
; The Sum function is called.

push eax
; The EAX register contains the value returned by the Sum function.
; Itis passed to the printf function as an argument.

push offset unk_406048
call _printf

add esp, 8

; The printf function is called.

mov  esp, ebp
pop ebp
; The stack frame is closed.

retn
main endp

;int __cdecl Reverse_1 (char *,int)

; Note that the function's prototype is defined incorrectly!

; Actually, as already inferred from the analysis of the calling
; function, it looks like this: Reverse(char *dst, char *src).

; The names of arguments are based on the fact that the left
; argument is a pointer to an uninitialized buffer,

; and is probably used as a destination;

; the right argument is a source in such a case.

Reverse_1 proc near ; CODE XREF: main+321 p
arg_0 = dword ptr 8
arg_4 = dword ptr OCh

push ebp

mov ebp, esp
; The stack frame is opened.

mov eax, [ebp+arg_4]
; The arg_4 argument is loaded into EAX.

push eax
; The arg_4 argument is passed to the strcpy function.



mov  ecx, [ebp+arg_0]
; The value of the arg_0 argument is loaded into ECX.

push ecx
; The arg_0 argument is passed to the strcpy function.

call strcpy

add esp, 8

; The contents of the string pointed to by arg_4
; are copied to the buffer pointed to by arg_0.

mov edx, [ebp+arg_0]
; EDX is loaded with the contents of the arg_0 argument, which
; points to the buffer that contains the string just copied.

push edx ; Char *
; The arg_0 argument is passed to the __strrev function.

call __ strrev

add esp, 4

; The strrev function reverses the string pointed to

; by arg_0. Therefore, the Reverse_1 function returns

; its value via the arg_0 argument passed by reference.

; The string pointed to by arg_4 remains unchanged.

; Therefore, the prototype of the Reverse_1 function

; looks like this: void Reverse_1 (char *dst, const char *src).

; The const qualifier should never be neglected: It presents

; clear evidence that the given pointer references

; a read-only variable. This considerably facilitates work with a
; disassembler listing, especially if you return to it after some

; time and have forgotten the algorithm of the analyzed program.

pop ebp
; The stack frame is closed.

retn
Reverse_1 endp
;int __cdecl Reverse_2(char *)
; This time, the function's prototype is defined correctly
; (apart for the returned type being void, not int).

Reverse_2 proc near ; CODE XREF: main+4F1 p
arg_0 = dword ptr 8
push ebp

mov ebp, esp
; The stack frame is opened.

mov eax, [ebp+arg_Q0]
; The contents of the arg_0 argument are loaded into EAX.

push eax; char*
; The arg_0 argument is passed to the strrev function.

call __ strrev

add esp, 4

; The string is reversed. The result is placed at the same location.
; Therefore, the Reverse_2 function returns the value

; viaarg_0, and our hypothesis proves to be correct.






the returned value. It is easy to distinguish a pointer from other types: Only a pointer can be used in an address
expression.

Let's consider the following example:

Listing 117: Returning a Value via the Heap

#include <stdio.h>
#include <malloc.h>
#include <stdlib.h>

char* MyFunc(int a)

{
char *x;
x = (char *) malloc(100);
_ltoa(a, x, 16);
return x;

}

main()

{
char *x;
x=MyFunc(0x666);
printf("0x%s\n", x);
free(x);

}

The disassembled code of the compiled version of the previous example looks as follows:

Listing 118: The Disassembled Code for Returning a Value via the Heap

main proc near ; CODE XREF: start+AF! p
var_4 = dword ptr -4
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
; Four bytes of memory are allocated
; for a local variable. (See var_4.)

push 666h
; The 666 value of the int type is passed to the MyFunc function.

call MyFunc

add esp, 4

; The MyFunc function is called. Note that no argument
; has been passed to the function by reference!

mov [ebp+var_4], eax
; The value returned by the function is copied to var_4.

mov eax, [ebp+var_4]
; Outstanding! The value returned by the function
; is loaded back into EAX!

push eax
; The value returned by the function is passed to the printf



; function. The qualifier indicates that the returned value is

; of the char * type. Since none of the arguments were passed
; to MyFunc function by reference, it allocated memory

; on its own, then wrote the received string to that memory.

; What if one or more arguments had been passed by

; reference to the MyFunc function? The function

; could have modified, then returned, one of these arguments.
; However, modification could not occur.

; For example, pointers to two strings could be passed

; to the function, which could return the pointer to

; the shorter string, or to the string that contained more vowels.
; Therefore, not every case of returning the pointer

; Is a sign of modification.

push offset aOxS ; "0x%s\n"

call _printf

add esp, 8

; The printf function is called; the string returned
; by the MyFunc function is printed.

mov  ecx, [ebp+var_4]
; ECXis loaded with the value of the pointer returned
; by the MyFunc function.

push ecx ;void *

; The pointer returned by MyFunc is passed to the free function.
; This means that MyFunc allocated memory by

; calling malloc.

call _free

add esp, 4

; Memory allocated by MyFunc
; to return the value is released.

mov esp, ebp
pop ebp
; The stack frame is closed.

retn
; Thus, the prototype of MyFunc looks like this:
; char* MyFunc(int a)

main endp
MyFunc proc near ; CODE XREF: main+91 p
var_4 = dword ptr -4
arg_0 = dword ptr 8
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
; Memory is allocated for local variables.

push 64h ; size_t

call _malloc

add esp, 4

; On the heap, 0x64 bytes are allocated, either for the needs
; of the function, or for returning the result. Because






Besides global variables, there are static ones. These also reside in the data segment, but they are directly accessible
only to the function that has declared them. This limitation is not imposed on the variables, but rather on their names.
To give other functions access to their own static variables, it is enough to pass a pointer. Fortunately, this trick doesn't
create any problems for hackers (although some spoilsports call it "a hole in the protection"). The absence of
immediate access to the static variables of "another," and the necessity for cooperation with the function owner via a
predictable interface (a returned pointer), allows a program to be divided into independent units that may be analyzed
separately. The following example provides an illustration of this:

Listing 119: Returning Values via Global and Static Variables

#include <stdio.h>
char* MyFunc(int a)

{
static char x[7][16]=("Monday", "Tuesday", "Wednesday", \
*** "Thursday", "Friday", "Saturday", "Sunday"};
return &x[a-1][0];
}
main()
{
printf("%s\n", MyFunc(6));
}

The disassembled code of this example, compiled using Microsoft Visual C++ 6.0 with default settings, looks as
follows:

Listing 120: The Disassembled Code for Returning Values via Global and Static Variables

MyFunc proc near ; CODE XREF: main+5| p
arg_0 = dword ptr 8
push ebp

mov ebp, esp
; The stack frame is opened.

mov eax, [ebp+arg_0]
; The value of the arg_0 argument is loaded into EAX.

sub eax, 1

; EAX is decremented by one. This is indirect evidence that arg_0
; Is not a pointer, although mathematical operations over

; pointers are allowed and used actively in C language.

shl eax, 4

; Here, (arg_0 -1) is multiplied by 16.

; A shift of 4 bits to the right is the equivalent of
; raising 2 to the 4th power, or 16.

add eax, offset aMonday; "Monday"

; The obtained value is added to the base pointer that references
; the table of strings in the data segment. The data segment

; contains either static or global variables. Since the value

; of the arg_0 argument is multiplied by some value

; (in this case, by 16), you can assume this is

; a two-dimensional array of fixed length strings.

; Thus, EAX contains a pointer to the string that has

; the index arg_0 -1, or arg_0, if the count starts from one.

pop ebp
; The stack frame is closed, and the pointer is returned to












Returning values via processor flags Assembly functions typically use the CPU flags register to return the result
(success or failure) of the function execution. By convention, the carry flag (CF) indicates an error. The zero flag (ZF) is
the next most popular one. Other flags practically are not used.

The carry flag is set by the STC instruction, or by any mathematical operation that results in a carry (for example, CMP
a, b, where a < b). This flag is reset by the CLC instruction, or by any appropriate mathematical operation.

The carry flag is usually checked by the JC xxx and JNC xxx jump instructions, executed, respectively, depending on
whether the carry is present or not. The JB xxx and JNB xxx branches are their syntactic synonyms, which give identical
code after assembling.

Listing 123: Returning Values via Processor Flags

#include <stdio.h>

Err () { printf (-ERR: DIV by Zero\n") ; }
/I This function gives a division-error message.

Ok (int @) (printf ("%x\n", @) ; }
/I The result of division is printed.

__declspec (naked) MyFunc ()

{

/I This assembler function implements division.

/I It divides EAX by EBX, then returns

/I the result into EAX and the remainder into EDX.

/I An attempt to divide by zero causes the function to set
/I the carry flag.

__asm{

xor edx, edx ; EDX is zeroed. That is, the div instruction
; expects the dividend to be in EDX:EAX.

test ebx, ebx ; The divisor is checked for zero.

jz _err ; If the divisor is equal to zero,
; jump to _err.
div ebx ; EDX:EAX is divided by EBX.

; (EBX is not equal to zero.)

ret ; Upon exiting, the quotient is returned into EAX
; and the remainder is returned into EDX.

_err: ; This code takes control
; when an attempt is made to divide by zero.

stc ; The carry flag is set, which signals
; the error and...

ret ; ...quits.

}

}

/I This is a wrapper for MyFunc.
/I Two arguments - the dividend and the divisor -
/I are received via the stack. The result of division
/I (or the error message) is displayed on the screen.
__declspec(naked) MyFunc_2 (int a, int b)
{
__asm{
mov eax, [esp+4] ; The contents of the a argument
; are loaded into EAX.
mov ebx, [esp+8] ; The contents of the b argument
; are loaded into EDX.

call MyFunc ; This is an attempt to divide a by b.
jnc_ok ; If the carry flag is reset,
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Figure 15: The mechanism for allocating local variables in the stack

Addressing local variables Local variables and stack arguments are addressed similarly. (See the "
" section.) The only difference is arguments are located "below" EBP, and local variables reside "above" it.
In other words, arguments have a positive offset relative to EBP, and local variables have a negative offset. Therefore,

they can easily be distinguished. For example, [EBP+xxx] is an argument, and [EBP—xxx] is a local variable.

The register that points at the stack frame serves as a barrier: The function's arguments are on one side of it, and the
local variables are on the other (Eig. 16). It's clear why ESP is copied to EBP when the stack frame is opened: If
copying didn't occur, the addressing of local variables and arguments would be complicated considerably. Compiler
developers are humans (strange as it may seem), and they don't want to complicate their lives unnecessarily.
However, optimizing compilers are capable of addressing local variables and arguments directly via ESP, freeing the
EBP register for more useful work.
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Figure 16: Addressing local variables

Implementation details There are plenty of ways to allocate and clear memory for local variables. For example, SUB
ESP, xxx can be used at the input, and ADD ESP, xxx can be used at the output. Striving, perhaps, to be distinguished,
Borland C++ and some other compilers allocate memory by increasing ESP, not decreasing it... by a negative number!
By default, most disassemblers interpret this as a large positive number. When allocating a small amount of memory,
optimizing compilers replace SUB reg with PUSH reg, which is shorter by a few bytes. This creates identification
problems: Is this saving registers on the stack, passing arguments, or allocating memory for local variables?

The algorithm for clearing memory is also ambiguous. In addition to encountering an increase in the register of the
stack-top pointer due to the ADD ESP, xxx instruction (or a decrease in it due to a negative number, as previously
mentioned), you may find the construction MOV ESP, EBP. (When the stack frame was opened, ESP was copied to
EBP, but EBP was not modified during the execution of the function.) Finally, memory may be released by the POP
instruction, which pops out local variables one by one into any unused register. (Such a method is justified only when
the number of local variables is small.)
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Table 8.14: Allocating and Clearing Memory for Local Variables

Action Implementation variants
Allocating memory SUB ESP, xxx ADD ESP, - xxx PUSH reg
ADD ESP, xxx SUB ESP, - xxx POP reg

Releasing memory
MOV ESP, EBP

Identifying the mechanism that allocates memory Using the SUB and ADD instructions, memory allocation is consistent
and interpreted unequivocally. If memory is allocated using the PUSH instruction and is cleared by POP, this
construction becomes indistinguishable from simple allocation and deallocation of registers on and from the stack. As a
complication, the function also contains instructions for allocating registers, mingled with memory-allocation
instructions. Is it possible to ascertain how many bytes are allocated for local variables, or whether any bytes have
been allocated? (The function may not contain local variables.)

The search for references to the memory locations "above" the EBP register (i.e., with a negative relative offset) might
be helpful. Let's consider two examples.

Listing 124: Identifying the Memory-Allocation Mechanism

push ebp push ebp

push ecx push ecx

XXX XXX

XXX mov [ebp-4], 0x666
XXX XXX

pop ecx pop ecx

pop ebp pop ebp

ret ret

In the left-hand example, there is no reference to local variables; in the right-hand code, the MOV [EBP-4], 0x666
construction copies the 0x666 value to the var_4 local variable. If there's a local variable, memory must have been
allocated for it. As there are no instructions such as SUB ESP, xxx or ADD ESP, xxx in the body of the function, the
memory must have been allocated by PUSH ECX. (The contents of the ECX register are stored on the stack 4 bytes
"above" EBP.) Only one instruction, PUSH ECX, can be cited, because PUSH EBP is not fit for the role of "allocator."
What can be done if there are several "suspects?"

The amount of allocated memory can be determined by the offset of the "highest" local variable in the body of the
function. In other words, of all the [EBP-xxx] expressions, the greatest xxx offset generally is equal to the number of
bytes of memory allocated for local variables. However, local variables can be declared and not used. Memory is
allocated for them (although optimizing compilers remove such variables as superfluous), but no reference occurs to
them. In this case, the algorithm for calculating the amount of allocated memory produces a result that is too low.
However, this error has no effect on the results of analyzing the program.

Initializing local variables There are two ways to initialize local variables: Assign the necessary value by the MOV
instruction (such as MOV [EBP-04], 0x666), or directly push the values onto the stack using the PUSH instruction (such
as PUSH 0x777). This allows the allocation of memory for local variables to be favorably combined with their
initialization (if there are only a few of these variables).

In most cases, popular compilers perform initialization using MOV; perverse assemblers are more likely to use PUSH,
sometimes in protection aimed at misleading hackers (although any hacker led astray by such a trick must be a
beginner).

Allocating structures and arrays tructures and arrays (i. e., their elements) are placed consecutively on the stack in
adjacent memory locations. The smaller index of an array is at the smaller address, but it is addressed by a larger
offset relative to the pointer-register of the stack frame. This is no surprise; because local variables are addressed by



a negative offset, [EBP-0x4] > [EBP-0x10].

The mess grows because IDA omits the minus sign when it gives hames to local variables. For example, of the
variables var_4 and var_10, the latter occupies the smaller address, the index of which is larger. If var_4 and var_10 are
two ends of an array, instinct would place var_4 at the head of an array, and var_10 at the end, although they belong in
the opposite locations.

Alignment in the stack In some cases, elements of a structure, an array, or even particular variables must be aligned
by addresses that are multiples of a specific power of 2. However, the stack-top pointer value is not defined
beforehand. How can the compiler, which does not know the index value, fulfill this requirement? It simply discards the
lower bits of ESP.

The lower bit of even numbers is zero. To ensure that the value of the stack-top pointer is divisible by two without a
remainder, simply force its lower bit to zero. If two lower bits are set to zero, the resulting value will be a multiple of
four; if three lower bits are set to zero, the resulting value will be a multiple of eight; and so on.

In most cases, bits are reset using the AND instruction. For example, AND ESP, FFFFFFO makes ESP a multiple of 16.
How do we obtain this? Let's convert OxFFFFFFFO to a binary form, which will give the following: 111111111 11111111
11110000. The four trailing zeroes mean that four lower bits of any number will be masked. The number will be divisible
by 2 to the power of 4, which equals 16.

How IDA identifies local variables Although local variables have been used in the previous listings, an example of how
they are identified may be helpful.

Listing 125: Identifying Local Variables

#include <stdio.h>
#include <stdlib.h>

int MyFunc (int a, int b)

{
int c; /I A local variable of the int type.
char x[50] // An array (shows the method of
/I allocating arrays in memory)
c=a+b; /Il The sum of a+ b is placed into c.
Itoa (c, &x[0], 0x10) ;  // The sum of a + b is converted into
/I a string.
printf ("%x == %s ==", ¢, &x[0]); // The string is displayed.
return c;
}
main ()
{

int a = 0x666; // The a and b local variables are declared,
int b = 0x777; // demonstrating the mechanism by which
/I the compiler initializes them.

intc [1]; // Tricks like this are necessary
/l to prevent the optimizing compiler from placing
/ the local variable into the register. (See the
/I "Register and Temporary Variables" section.)
// Because the pointer to c is passed to the printf
/l function, and a pointer to the register can't be
/I passed, the compiler has to leave the variable
/l in memory.

¢ [0] = MyFunc (a, b);
printf ("%x\n", &c [0]);

return O;






; Select Stack variables, or press the <Ctrl>+<K>

; key combination. A window will open that lists all

; recognized local variables. Bring the cursor to var_34,

; press <;> to enter a recurring comment, and write

; "char s[0x34]". Now, hit the <CtrI>+<Enter> key combination
; to finish input. Then, hit the <Esc> key to close

; the local-variables window. Now, each reference to var_34

; will be accompanied by the "char s [0x34]" comment.

push ecx ;char*
; The pointer to the local buffer for var_38
; Is passed to the Itoa function.

mov  edx, [ebp+var_4]
; The value of the var_4 local variable is loaded into EDX.

push edx ;_ int32

; The value of the var_38 local variable is passed

; to the Itoa function. Using the prototype of this function,

; IDA already has determined that the variable type is int.

; Press the <Ctrl>+<K> key combination, and comment var_4.

call __ ltoa

add esp, OCh

; The contents of var_4 are converted to a hexadecimal number
; represented as a string. The result is placed

; in the local buffer for var_38.

lea eax, [ebp+var_38] ; char s [0x34]
; The pointer to the local buffer for var_34 is loaded into EAX.

push eax
; The pointer to var_34 is passed to the printf function,
; which displays the contents on the screen.

mov  ecx, [ebp+var_4]
; The value of the var_4 local variable is loaded into ECX.

push ecx
; The value of the var_4 local variable is passed to printf.

push offset axS ; "%X == %s =="
call _printf
add esp, OCh

mov  eax, [ebp+var_4]
; The value of the var_4 local variable is returned into EAX.

mov  esp, ebp
; Memory occupied by local variables is released.

pop ebp
; The former value of EBP is restored.

retn
MyFunc endp

main proc near ; CODE XREF: start+AF! p

var_C = dword ptr -OCh
var_8 = dword ptr -8






That was rather easy, wasn't it? The disassembled code of this example compiled using Borland C++ 5.0 will be more
difficult.

Listing 127: The Disassembled Code for Identifying Local Variables Compiled Using Borland C++ 5.0

MyFunc proc near ; CODE XREF: _main+14! p

var_34 = byte ptr -34h

; Note that there is one local variable, although as many as three
; were declared! Where are the others? This compiler

; has placed them into the registers, rather than onto the stack,

; to speed up the process of addressing them.

; (See the "Register

; and Temporary Variables" section for more details.)

push ebp
mov ebp, esp
; The stack frame is opened.

add esp, OFFFFFFCC

; After this allocation, press <-> in IDA to convert the number
; into the signed one, which gives -34. Therefore, 0x34 bytes
; were allocated for local variables. Note that memory

; was allocated using ADD, not SUB!

push ebx

; Does this store EBX on the stack, or does it allocate memory

; for local variables? Because memory previously was allocated
; using ADD, PUSH must save the register onto the stack.

lea ebx, [edx+eax]

; This tricky addition gives the sum of EDX and EAX.

; Because EDX and EAX were not initialized explicitly,
; the arguments were passed via them.

; (See the "Function Arguments"” section.)

push 10h
; A radix of the choosen numeration system
; Is passed to the Itoa function.

lea eax, [ebp+var_34]
; The pointer to the local buffer for var_34 is loaded into EAX.

push eax
; The pointer to the buffer for writing the result
; Is passed to the Itoa function.

push ebx
; The sum of two arguments (not the pointer)
; Is passed to the MyFunc function.

call _ltoa
add esp, 0Ch

lea edx, [ebp+var_34]
; The pointer to the local buffer for var_34 is loaded into EDX.

push edx

; The pointer to the local buffer for var_34,

; which contains the sum of MyFunc's arguments converted
; Into a string, is passed to the printf function.



push ebx
; The sum of the arguments is passed to the MyFunc function.

push offset axXS ; format
call _printf
add esp, 0OCh

mov  eax, ebx
; The sum of the arguments is returned into EAX.

pop ebx
; EBX is popped off the stack, restoring its former state.

mov  esp, ebp
; Memory occupied by local variables is released.

pop ebp
; The stack frame is closed.

retn
MyFunc endp
; int__cdecl main (int argc, const char **argv, const char *envp)

_main proc near ; DATA XREF: DATA:004070441 o

var_4 = dword ptr -4
; IDA has recognized at least one local variable,
; which should be noted.

argc = dword ptr 8

argv = dword ptr OCh

envp = dword ptr 10h
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
push ebx
push esi
; The registers are saved on the stack.

mov  esi, 777h
; The value 0x777 is placed into the ESI register.

mov  ebx, 666h

; The value 0x666 is placed into the EBX register.

mov  edx, esi

mov  eax, ebx

; The arguments are passed to MyFunc via the registers.
call MyFunc

; The MyFunc function is called.

mov [ebp+var_4], eax

; The result returned by MyFunc is copied to the var_4 local
; variable. Wait! Which local variable? How has memory

; been allocated for it? Only one of the PUSH instructions

; could have done this. But which one? Look at the offset

; of the variable: It resides 4 bytes higher than EBP,

; and its memory area is occupied by the contents of

; the register saved by the first PUSH instruction, which
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Figure 17: Addressing local variables via the ESP register forms a floating stack frame
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Contemporary compilers are capable of addressing local variables via ESP, and dynamically tracing the ESP value
(unless tricky assembler inserts in the function's body unpredictably modify the ESP value).

This complicates an analysis of the code. After pointing to any part of the code, it is impossible to determine which
local variable is being addressed; the whole function must be thoroughly worked out, and the ESP value must be
watched closely. (Often, massive errors will nullify all preceding work.) Fortunately, the IDA disassembler knows how
to treat such variables. Nevertheless, hackers never rely entirely on automatics; rather, they try to understand how
things work.

Let's turn to our good old file simple.c and compile it with the /02 key, which optimizes performance by having the
compiler use all registers and address local variables via ESP.

>cl sample.c /02
00401000: 83 EC 64 sub esp,64h

Memory is allocated for local variables. Note that there are no instructions such as PUSH EBP or MOV EBP, ESP!

00401003: AO 00 69 4000 mov al, [00406900] ; mov al, 0

00401008: 53 push  ebx
00401009: 55 push  ebp
0040100A: 56 push  esi
00401008B: 57 push edi

The registers are saved.

0040100C: 88 44 24 10 mov byte ptr [esp+10h], al

The zero value is placed into the [ESP+0x10] variable. (Let's call it buff.)

00401010: B9 18 000000 mov ecx, 18h
00401015: 33 CO xor eax, eax
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00401017: 8D 7C 24 11 lea edi, [esp+11h]

EDI is set to point to the local variable [ESP+0x11] (an uninitialized tail of buff).

0040101B: 68 60 60 40 00 push  406060h ; "Enter password"

The offset of the "Enter password" string is placed onto the stack. Note that the ESP register creeps 4 bytes upward.

00401020: F3 AB rep stos dword ptr [edi]
00401022: 66 AB stos  word ptr [edi]
00401024: 33 ED xor ebp, ebp
00401026: AA stos  byte ptr [edi]

The buffer is zeroed.

00401027: E8 F401 0000 call 00401220

The "Enter password" string is displayed on the screen. Note that the arguments have not been popped off the stack!

0040102C: 68 70 60 40 00 push  406070h

The offset of the pointer to the stdin pointer is placed onto the stack. Note that ESP creeps another 4 bytes upward.
00401031: 8D 4C 24 18 lea ecx, [esp+18h]
The pointer to the [ESP+0x18] variable is loaded into ECX. Is this just another buffer? No; this is the [ESP+0x10] variable,

which has changed its appearance because ESP has been modified. Subtracting 8 bytes (which ESP crept upward)
from 0x18 gives 0x10, our old acquaintance [ESP+0x10]. (Should old acquaintance be forgot?)

Analyzing a procedure that contains a dozen lines is fairly straightforward, but a program of a million lines would be
enough to drive anyone mad. The alternative is to use IDA. Consider the following example:

.text:00401000 main proc near ; CODE XREF: start+AF| p

.text:00401000
.text:00401000 var_64 = byte ptr -64h
.text:00401000 var_63 = byte ptr -63h

IDA revealed two local variables located at the offsets 63 and 64, relative to the stack frame; that's why they were given
the names var_63 and var_64.

.text:00401000 sub esp, 64h
.text:00401003 mov al, byte_0_406900
.text:00401008 push ebx

.text:00401009 push ebp

.text:0040100A push esi

.text:0040100B push edi

.text:0040100C mov [esp+74h+var_64], al

IDA automatically combined the local variable name and its offset in the stack frame.

.text:00401010 mov  ecx, 18h
.text:00401015 Xor eax, eax
.text:00401017 lea edi, [esp+74h+var_63]

IDA failed to recognize the initialization of the first byte of the buffer and mistook it for a separate variable. Only a
human can figure out how many variables are used here.

.text:0040101B push offset aEnterPassword ; "Enter password:"
.text:00401020 repe stosd
.text:00401022 stosw

.text:00401024 xor ebp, ebp
.text:00401026 stosb

.text:00401027 call sub_0 401220
.text:0040102C push offset off_0_406070
.text:00401031 lea ecx, [esp+7Ch+var_64]

Note that IDA correctly recognized that the var_64 variable was accessed, even though its offset, 0x7C, differs from
0x64.



Register and Temporary Variables

In an attempt to minimize the number of memory access operations, optimizing compilers place the most intensively
used local variables into general-purpose registers, saving them on the stack only in extreme cases (and, ideally,
never).

What kind of difficulties does this create during analysis? First, it introduces a context dependence into the code. In an
instruction such as MOV EAX, [EBP+var_10], the contents of the var_10 variable are being copied to the EAX register.
The variable type can be found by searching the function body for every occurrence of var_10, which may indicate the
purpose of the variable.

This trick, however, will not work with register variables. Suppose that we encountered the MOV EAX, ESI instruction
and want to trace all references to the variable of the ESI register. Searching the function body for the substring "ESI"
gives nothing or, even worse, produces a set of false hits. What can be done?

One register — in this case, ESI — may be used to store many different variables temporarily. There are only seven
general-purpose registers; EBP is assigned to the stack frame, and EAX and EDX are used for the returned value of the
function. Therefore, only four registers are available to store local variables. There are even fewer free registers when
programs written in C are executed — one of these four registers is used as the pointer to the virtual table, and another
is the pointer to an instance of this. Pressing ahead with just two registers is not really possible; there are dozens of
local variables in a typical function. This is why the compiler uses registers as a cache. Cases of each local variable
residing in a register are exceptional; variables often are scattered chaotically around the registers, sometimes stored
on the stack, and frequently popped off into a different register (rather than the one in which the contents were stored).

No contemporary disassembler (including IDA) is capable of tracing the "migration” of register variables; this operation
has to be done manually. It is simple, although tiresome, to determine the contents of a particular register at any point
in the program: Just work through the program mentally from startup to the point in question, tracing all the passing
operations. It is more difficult to find out how many local variables are stored in a particular register. When a large
number of variables are mapped on a small number of registers, it becomes impossible to reconstruct the map
unambignously. For example, the programmer declares the a variable, and the compiler places it into the X register.
Later, the programmer declares the b variable. If the a variable is no longer used (as is often the case), the compiler
may place the b variable into the X register without worrying about saving the value of a. As a result, one variable is
lost. At first glance, there are no problems; losing one variable is not a disaster. But if a was sufficient, why has the
programmer introduced b? If the a and b variables are of the same type, no problems arise; if they are different, the
analysis of the program becomes extremely complicated.

Let's look at techniques for identifying register variables. Many hacker manuals assert that register variables differ from
other variables in that they never deal with memory. This is incorrect. Register variables can be stored on the stack
temporarily by the PUSH instruction and restored by the POP instruction. In some ways, a variable of this sort ceases to
be a register variable; nevertheless, it does not become a stack variable. To avoid defining hundreds of variable
classes, let's agree that the register variable is a variable contained in the general-purpose register that may be stored
on the stack, but always at its top; it can never be stored in the stack frame. In other words, register variables are
never addressed via EBP. If the variable is addressed via EBP, it "lives" in the stack frame and is a stack variable. Is
this correct? No; If the value of the b stack variable is assigned to the a register variable, the compiler will generate
code similar to the following: MOV REG, [EBP-xxx]. Accordingly, the assignment of the value of the register variable to
the stack variable will look like this: MOV [EBP-xxx], REG. Despite reference to the stack frame, the REG variable
remains a register variable. Consider the following code:

Listing 128: Distinguishing Register Variables from Temporary Variables

mov [ebp-0x4], 0x666
mov esi, [ebp-0x4]
mov [ebp-0x8], esi
mov esi, 0x777

sub esi, [ebp-0x8]
mov [ebp-Oxc] , esi

This code can be interpreted in two ways: Either there is an ESI register variable (the source code shown in the left



part of ,ﬁl register['-] is being used as a temporary variable for passing data (the source code shown
| isting 12

in the right part of | ).

Listing 129: The Source Code When ESI Is a Register Variable (Left) and a Temporary Variable (Right)

int var_4=0x66; int var_4=0x666;

int var_8=var_4; register ESl =var_4;

int vac_C=0x777 - var_8 int var_8=ESI;
ESI=0x777-var_8;
intvar_C = ESI

Although the algorithms of the listings are identical, the code on the left is substantially more illustrative than the code
on the right. The main objective of disassembling is to reconstruct the algorithm of a program, not to reproduce the
source code of a program. It does not matter whether ESI represents a register or a temporary variable. The main
thing is that everything works smoothly. In general, you should choose the most understandable interpretation if there
are several versions.

Before examining temporary variables in detail, let's summarize our knowledge of register variables by analyzing the
following example:

Listing 130: Identifying Register Variables

main ()
{
int a=0x666;
int b=0x777;
int c;
c=atb;
printf ("%Xx + %x = %x\n", a, b, c);
c=b-a;
printf ("%xX - %x = %x\n", a, b, c);

The disassembled code of this example, compiled using Borland C++ 5.x, gives the following result:

Listing 131: The Disassembled Code for Identifying Register Variables

;int _ _cdecl main(int argc, const char **argv, const char *envp)

_main proc near ; DATA XREF: DATA:00407044! o
argc = dword ptr 8

argv = dword ptr OCh

envp = dword ptr 10h

; Note that no stack variable has been recognized by IDA,
; although several were declared in the program. It seems likely
; that the compiler has allocated them in registers.

push ebp

mov ebp, esp

; The stack frame is opened.

push ebx

push esi

; What happened here? Were the registers saved

; on the stack, or was memory allocated for the stack

; variables? Since no stack has been recognized by IDA,
; this code likely saved the registers.

mov  ebx, 666h
; The register is initialized. Compare this with Listing 126



; (in the "Local Stack Variables" section),

; which contained the following line:

; mov [ebp+var_4], 666h

; Hence, EBX is likely a register variable.

; The variable's existence can be proven: Had the

; value 0x666 been passed directly to the function - for example,
; printf ("%x %x %x\n", 0x666) - the compiler would have placed
; the PUSH 0x666 instruction into the code.

; This did not occur; therefore, the value 0x666 is passed via

; the variable. Thus, the reconstructed source code should contain:
; 1. int a=0x666

mov  esi, 777h
; Similarly, ESI likely represents a register variable:
; 2. int b=0x777

lea eax, [esi+ebx]
; The sum of ESI and EBX is loaded into EAX.
; EAX is not a pointer; this is just a tricky addition.

push eax

; The sum of the ESI and EBX register variables is passed to the
; printf function. However, the contents of EAX are interesting:

; They could be an independent variable, or the sum

; of the a and b variables, which is passed

; to the printf function directly.

; For better readability, let's choose the latter:

; 3. printf (,,,, a+b)

push esi

; The register variable ESI, denoted as b

; in the preceding code, is passed to the printf function.
; 3. printf (,,, b, a+b)

push ebx

; The register variable EBX, denoted as a

; in the preceding code, is passed to the printf function.
; 3. printf (,, &, b, a+b)

push offset aXXX ; "%x + %x = %x"

; The pointer to the format-specification string

; Is passed to the printf function. This string indicates
; that all three variables are of the int type.

; 3. printf ("%x + %x = %x", a, b, a+b)

call _printf
add esp, 10h

mov  eax, esi

; The register variable, previously denoted as b,
; is copied to EAX.

;4. intc=b

sub eax, ebx

; The value of the variable contained in EBX (a) is subtracted
; from the variable contained in the EAX register (c).

;5. c=c-a

push eax

; The difference between the variables contained

; in EAX and EBX is passed to the printf function.

; Because this difference between the b and a values was passed






Here, tmp is a temporary variable created to execute the operation b=a, then eliminated as superfluous.

Compilers (especially optimizing ones) tend to allocate temporary variables in registers; they only push temporary
variables onto the stack in extreme cases. Mechanisms for allocating memory and the techniques for reading and
writing temporary variables vary.

Typically, compilers react to an acute lack of registers by saving variables on the stack. Most often, integer variables
are showered on the top of the stack by the PUSH instruction, then pulled from there by the POP instruction. It is
possible to assert with confidence that an integer temporary variable is being dealt with if a program's code contains
this sort of "push-poT" situation — not hjwever, saving the contents of the initialized register in a function's stack
argument. (See the "Eunction Argumentg" section.) In most cases, the allocation of memory for floating-point variables
and the initialization of these variables occur separately. This is because an instruction that allows the compiler to
transfer data from the top of the coprocessor stack to the top of the CPU stack doesn't exist; the operation must be
carried out manually. First, the stack-top pointer (in the ESP register) is "lifted" slightly (usually by the SUB ESP, xxx
instruction). Then, the floating-point value is written in the allocated memory (usually, FSTP [ESP] ). Finally, when the

temporary variable becomes unnecessary, it is deleted from the stack by the ADD ESP, xxx instruction or something
similar (such as SUB, ESP, -xxx).

Advanced compilers (such as Microsoft Visual C++) are capable of allocating variables in the arguments that remain
on the top of the stack after the most recently called function completes execution. This trick applies to cdecl functions,
but not to stdcall functions; the latter clear arguments from the stack independently. (See the "fFunction Argumentg"
section for more details.) This type of trick appeared during the analysis of the mechanism of returning values by
functions (in the "Values Returned by Functions" section).

Temporary variables larger than 8 bytes (strings, arrays, structures, objects) almost always are allocated on the stack.
They are distinguished from other types by their initialization mechanism: Instead of the traditional MOV, one of the
cyclic move instructions, such as MOVSy, is used. If necessary, it is preceded by the REP recurrence prefix (Microsoft
Visual C++, Borland C++). Alternatively, several MOVSx instructions can be used consecutively (Watcom C).

The mechanism of allocating memory for temporary variables is almost identical to the mechanism of allocating
memory for stack local variables. Nevertheless, correct identification is not a problem. First, memory is allocated for
stack variables immediately after the stack frame is opened. For temporary variables, memory allocation takes place at
any point of the function. Second, temporary variables are addressed not via the stack-frame pointer, but via the
pointer to the stack top.

Table 15: The Basic Mechanisms for Handling Temporary Variables

Methods
Action
1st an Srd
Allocating memory PUSH SUB ESP, xxx Use stack argumentéﬂ
Releasing memory POP ADD ESP, xxx
Writing a variable PUSH MOV [ESP+xxx], Move instruction
Reading a variable POP MOV, [ESP+xxx] Pass to the called function
mfor cdecl only.

Different compilers create temporary variables in different instances. However, it is possible to identify two instances in
which the creation of temporary variables is unavoidable: when performing assignment, addition, or multiplication
operations, and when an argument of a function or a part of an expression is another function. Let's consider each
case in more detail.

Creating temporary variables when moving data or computing expressions As previously mentioned, 80x86



microprocessors do not support the direct transfer of data from memory to memory. Therefore, assigning one
variable's value to another variable requires a temporary register variable (if there are no other register variables).

Computing expressions (especially complex ones) requires temporary variables to store intermediate results. How
many temporary variables are required to compute the following expression?

int a=0x1; int b=0x2;

intc = 1/ ((1-a) / (1-b));

Let's begin from the parentheses, and rewrite the expression in the following way: int tmp_d = 1; tmp_d = tmp_d-a; and
int tmp_e = 1; tmp_e=tmp_e-b; then int tmp_f = tmp_d/tmp_e; and, finally, tmp_j = 1; ¢ = tmp_j/tmp_£{. It turns out that there
are four temporary variables. This seems a little excessive; is it possible to write it in a shorter way?

inttmp_d = 1; tmp_d=tmp_d-a; // (1-a);

int tmp_e=1; tmp_e=tmp_e-b; // (1-b);

tmp_d=tmp_d/tmp_e; // (1-a)/ (1-b);

tmp_e=1; tmp_e=tmp_e/tmp_d;

We can manage with two temporary variables. What if the expression were more complex, employing ten pairs of
parentheses, rather than three: How many temporary variables would that require?

There is no need to count: No matter how complex the expression is, two temporary variables are sufficient. If the
parentheses are removed, we can manage with one variable, although excessive computation will be required. (This
question will be considered in more detail in the "Mathematical Operators" section.) Now, let's see the results of
compilation.

Listing 132: The Disassembled Code for Computing Complex Expressions

mov [ebp+var_4], 1
mov [ebp+var_8], 2
mov [ebp+var_C], 3
; The local variables are initialized.

mov eax, 1

; Here, the first variable is introduced.

; An intermediate value is placed into it, since the SUB
; instruction always places the result of computation

; at the location of the minuend because of architectural
; peculiarities of the 80x86 microprocessors.

; The minuend cannot be a direct value;

; therefore, a temporary variable must be introduced.

sub eax, [ebp+var_4]
JtIEAX :=1-var_4
; The computed value (1-a).

mov ecx, 1
; Yet another temporary variable is introduced
; because EAX is already occupied.

sub ecx, [ebp+var_8]
JIECX:=1-var_8
; The computed value (1-b) is stored in the ECX register.

cdqg

; The double word that resides in EAX is converted into

; @ quad word and placed into EDX:EAX.

; (The idiv machine instruction always expects to see the
; dividend in these registers.)

idiv ecx
; The computed value (1-a) is divided by (1-b), and the quotient
; is placed into tEAX. Inevitably, the old value of the temporary









The mistake is obvious: The value that we have found is not an operand of the instruction. Moreover, it spans two
instructions! Rejecting all occurrences that cross instruction boundaries immediately removes a significant part of the
garbage. The problem is how to determine the instruction boundaries; it is impossible to say anything about the
instruction if you only have a part of it.

Consider the following construction: 8D 81 04 B9 41 00 00. Ignoring the trailing zero, this sequence can be interpreted
as LEA EAX, [ECX+0x41B904]. If, however, 0x8D belongs to the "tail" of the previous instruction, the following instruction
will be ADD D, [ECX] [EDI]*4, 000000041. There even may be several instructions here.

The most reliable way to determine the boundaries of machine instructions is to disassemble with tracing;
unfortunately, this operation demands lots of resources, and not every disassembler is capable of tracing the code.
Therefore, another method is required.

Machine code can be represented figuratively as typewritten text printed without spaces. An attempt to read from a
random position likely will start in the middle of a word, and won't produce anything intelligible. The first several
syllables may form an intelligent word (or even two), but continuous nonsense will appear further on.

The differences between constants and pointers, or salvaging the remaining garbage. At last, we have removed all the
false hits. The heap of garbage has diminished appreciably, but artifacts such as PUSH 0x401010 keep turning up.
What is 0x401010 — a constant or an offset? It could be either; it is impossible to tell until we reach the code that
handles it. If 0x401010 is addressed by the handling code as a value, it is a constant; if it is addressed by reference, it is
a pointer. (Here, it is an offset.)

This problem will be discussed in detall in the "honstants and Offsetsl" section. For now, | would like to note — with
great relief — that the minimal address for loading a file in Windows 9x is 0x400000, and there are few constants
expressed by such a large number.

Note The minimal address for loading a file in Windows NT is 0x10000. However, for a program to work successfully
under both Windows NT and Windows 9x, loading should start from an address no lower than 0x400000.

@@The trials and tribulations of 16-bit mode It is not as simple to distinguish a constant from a pointer in 16-bit
mode as it is in 32-bit mode. In 16-bit mode, one or more segments of 0x10000 bytes are allocated for data. Admissible
values of offsets are confined to a narrow range — 0x0 to OxFFFF — and most variables have offsets that are very
small and visually indistinguishable from constants.

Another problem is that one segment often cannot accommodate all the data; therefore, several segments must be
initialized. Two segments are tolerable: One is addressed via the DS register, the other is addressed viaES, and no
difficulties arise in determining which variable points to which segment. For example, if all references to the X global
variable, located in the base segment at the 0x666 offset, are of interest, all instructions such as MOV AX, ES: [0x666]
can be rejected at once. In this case, the base segment is addressed via DS (by default), and this segment refers to
ES. However, addressing also may occur in two stages, such as MOV BX, 0x666/xxx—xxx/MOV AX, ES: [BX]. Having
seen MOV BX, 0x666, it will be impossible to determine a segment, and even to tell whether this is an offset.
Nevertheless, this does not overcomplicate the analysis.

The situation becomes worse if there are a dozen data segments in a program. (It is conceivable that 640 KB of static
memory could be required.) No humber of segment registers will be sufficient for this; they will have to be reassigned
many times. To figure out which segment is being addressed, the value of the segment register must be determined.
The simplest way to do this is to scroll the disassembler screen slightly upward and look for the initialization of the
segment register in question. Bear in mind that initialization often is done by POP, rather than by the MOV segREG,
REG instruction. Note that PUSH ES/POP DS is equivalent to MOV DS, ES. Unfortunately, there is no equivalent of the
MOV segREG, segREG instruction in the language of the 80x86 microprocessors. There is no MOV segREG, CONST
instruction either, which is why it must be emulated manually, or as follows: MOV AX, 0x666/MOV ES, AX. Another
possible method is the following: PUSH 0x666/POP ES.

Thankfully, 16-bit mode almost has become a thing of the past, and its problems have been buried by the sands of
time. Programmers and hackers breathed a sigh of relief after the transition to 32-bit mode.

Addressing global variables indirectly Often, a claim is made that global variables are always addressed directly.
However, the programmer may address a variable as desired in the inserts written in the assembler language. The



situation is far from simple. If a global variable is passed by reference to a function (there is no reason by which a
programmer cannot pass a global variable by reference), it will be addressed indirectly, via a pointer. At this point, an
objection may be raised: Why should a global variable be passed explicitly to a function? Surely, any function can
address a global variable without passing it. This is true, but only if the function knows about this beforehand. Suppose
that the xchg function swaps its arguments, and two global variables urgently need to be swapped. The xchg function
can access all global variables, but it does not know which of them to change, or whether doing so is necessary. This
is why global variables sometimes must be explicitly passed as arguments to functions. This also means that it is
impossible to find all the references to global variables by using a simple context search. IDA Pro will not find them
either; to do so, it would need a full-featured processor emulator, or at least one capable of emulating its basic
instructions — as can be seen in the following example.

Listing 135: Passing Global Variables Explicitly

#include <stdio.h>

int a; int b; // Global variables a and b

xchg (int *a, int *b)
/I The function that swaps the values of the arguments

{
int c; c=*a; *b=*a; *b=c;
/I The arguments are addressed indirectly,
/l using a pointer. If the arguments
/I of the function are global variables,
/I they will be addressed indirectly.
}
main ()
{
a=0x666; b=0x777; // The global variables are addressed directly.
xchg (&a, &b); /I The global variables are passed by reference.
}

The disassembled code of this example, compiled using Microsoft Visual C++, will look as follows:

Listing 136: The Disassembled Code for Passing Global Variables Explicitly

main proc near ; CODE XREF: start+AF| p
push ebp
mov ebp, esp
; The stack frame is opened.

mov dword_405428, 666h

; The dword_405428 global variable is initialized.
; The indirect addressing indicates that this is

; a global variable.

mov dword_40542C, 777h
; The dword_40542C global variable is initialized.

push offset dword_40542C

; Note that this passes the offset of the dword_40542C global
; variable to the function as an argument (i.e., it is passed

; by reference). This means that the function will address the
; variable indirectly - via the pointer - in the same way as

; it addresses local variables.

push offset dword_405428
; The offset of the dword_405428 global variable
; Is passed to the function.



call xchg

add esp, 8
pop ebp
retn
main endp
xchg proc near ; CODE XREF: main+211 p
var_4 = dword ptr -4
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
; Memory is allocated for the var_4 local variable.

mov eax, [ebp+arg_Q0]
; The contents of the arg_0 argument are loaded into EAX.

mov  ecx, [eax]

; A global variable is addressed indirectly. Now you can see
; that, in contrast to common opinion, this can happen.

; Only analysis of the code of the calling function can reveal
; that a global variable was addressed (and which one).

mov [ebp+var_4], ecx
; The *arg_0 value is copied into the var_4 local variable.

mov edx, [ebp+arg_4]
; The contents of the arg_4 argument are loaded into EDX.

mov eax, [ebp+arg_Q0]
; The contents of the arg_0 argument are loaded into EAX.

mov  ecx, [eax]
; The *arg_0 argument is copied into ECX.

mov [edx], ecx
; The arg_0[0] value is copied into [arg_4].

mov edx, [ebp+arg_4]
; The arg_4 value is loaded into EDX.

mov eax, [ebptvar_4]
; The value of the var_4 local variable is loaded into EAX

; (stores *arg_0).

mov [edx], eax
; The *arg_0 value is loaded into *arg_4.

mov  esp, ebp

pop ebp
retn
xchg endp

dword_405428 dd 0
dword_40542C dd 0

; DATA XREF: main+3t w main+1C1t o
; DATA XREF: main+D 1w main+171 o






pointer to the memory location at the offset 0x401020 (an example of the corresponding C code would be a=&x).
Obviously, a=0x401020 is different from a=&x. What would happen if the x variable in the newly assembled program
appears at another offset, not at 0x401020? The program would fail, because the a pointer still points to the memory
location 0x401020, which contains a different variable.

Why may a variable change its offset? There are two principal reasons. First, the assembler language is ambiguous
and allows interpretation. For example, the ADD EAX, 0x66 construction may be represented by two machine
instructions — 83 CO 66 and 05 66 00 00 00 — of 3 and 5 bytes. The compiler may choose either instruction, which may
not be the one in the initial program (before it was disassembled). If the compiler picks the wrong-size instruction, then
all other instructions, as well as data, will float away. Second, modifying the program — really changing it, not just
substituting JNZ for JZ — will inevitably cause the pointers to float away. The offset instruction may help return the
program to a functioning state. If MOV EAX, 0x401020 loads a pointer into EAX, not a constant, then a label such as
loc_401020 needs to be created at the offset 0x401020, and MOV EAX, 0x401020 needs to be replaced with MOV EAX,
offsetloc_401020. Now, the EAX pointer is not bound to the fixed offset; rather, it is bound to the label.

What happens if the offset instruction is put before a constant that has been misidentified as a pointer? The program
will fail, or it will work incorrectly. Imagine that the number 0x401020 represents the volume of water in a pool that has
an inlet pipe and an outlet pipe. Replacing the constant with the pointer makes the volume of the pool equal the offset
of the label in the newly assembled program, and computation becomes impossible.

Thus, it is important to determine every immediate operand's type, and even more important to determine it correctly.
One mistake can kill a program's operability, and a typical program contains thousands or tens of thousands of
operands. Two questions arise: How are operand types determined? Is it possible to determine them automatically, or
at least semiautomatically?

Determining the type of an immediate operand An immediate operand of the LEA instruction is a pointer. (However, to
mislead hackers, some forms of protection use LEA to load a constant.)

Immediate operands of the MOV and PUSH instructions may be either constants or pointers. To determine the type of
an immediate operand, it is necessary to analyze how its value is used in the program. If it is used for addressing
memory operands, it is a pointer; otherwise, it is a constant.

Suppose that the MOV EAX, 0x401020 instruction turns up in the code of a program ). What is it — a constant or
a pointer? The answer to this question is given by the MOV ECX, [EAX] line, which indicates that the value 0x401020 is
used to address the memory indirectly. Hence, the immediate operand can only be a pointer.

MOV EAX, [0X401020]
A Register indirect addressing
MOV ECX, [EAX] MOV ECH, [0X401020]

A

Figure 19: Addressing modes

There are two types of pointers: pointers to data and pointers to a function. Pointers to data are used to extract values
from memory locations. They occur in arithmetic and move instructions (such as MOV, ADD, SUB). Pointers to functions
are used in indirect call instructions (CALL) and, less often, in indirect jump instructions (JMP).

Consider the following example:

Listing 137: An Example of Constants and Pointers

main ()

{
static int a=0x777;
int *b = &a;
int c=b [0];
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Disassembling the compiled code of this example gives the following:

Listing 138: The Disassembled Code That lllustrates Constants and Pointers

main proc near
var_8 = dword ptr -8
var_4 = dword ptr -4

push ebp

mov ebp, esp

sub esp, 8

; The stack frame is opened.

mov  [ebp+var_4], 410000h

; The value 0x410000 is loaded into the var_4 local variable.
; As yet, it is not possible to say

; whether it is a constant or a pointer.

mov  eax, [ebp+var_4]
; The contents of the var_4 local variable
; are loaded into the EAX register.

mov  ecx, [eax]

; ECXis loaded with the contents of the memory location pointed
; to by the EAX pointer. This means that EAX is a pointer.

; Therefore, the var_4 local variable from which it was loaded

; Is also a pointer, and the immediate operand 0x410000

; IS a pointer, not a constant. To preserve the program's

; operability, the loc_410000 label must be created at the offset

; 0x410000. The label will convert the memory location at this

; address into a double word. In addition,

; the MOV [ebp+var_4], 410000h instruction must be replaced with
; MOV [ebp+var_4], offset loc_410000.

mov  [ebp+var_8], ecx
; The value of *var_4 (offset loc_41000)
; Is assigned to the var_8 local variable.

mov  esp, ebp

pop ebp
; The stack frame is closed.

retn
main endp

The following example calls a procedure indirectly:

Listing 139: An Indirect Call of a Procedure

func(int a, int b)

{
return a+b;
I
main ()
{

int (*zzz) (int a, int b) = func;

/I The function is called indirectly using the zzz pointer.
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Figure 21: The main types of strings
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Figure 22: A schematic representation of the nest

A pointer also may be combined with a constant. These combinations are so popular that 80x86 microprocessors have
a special addressing mode for the purpose. Suppose that we have a pointer to an array and the index of a certain
element of the array. To obtain the value of the element, the index, multiplied by the size of the element, must be
added to the pointer. Subtraction of a constant from the pointer is used rarely; it is required by a smaller scope of
calculations, it often results in serious problems. The following technique is popular among beginners: To get an array
whose index begins with one, they declare a standard array, obtain a pointer to it, and decrease the pointer by one.
This appears to be an elegant solution. Nevertheless, consider what happens if the pointer to the array is equal to
zero. In this situation, "the snake will bite itself by the tail", and the index will become a large positive number.
Generally, under Windows NT/9x, an array cannot be allocated at an offset of zero. However, it is unwise to get used
to the tricks that work on one platform and not on others.

"Normal" programming languages forbid the mixing of different types. Such mixing can result in a mishmash and a
fundamental problem of disassembling — determining types in combined expressions. Consider the following example:

mov eax, 0x...
mov ebx, 0x...
add eax, ebx

mov ecx, [eax]

It seems to be a two-headed camell The sum of two immediate values is used for indirect addressing. It is logical to
assume that both values cannot be pointers. One of the immediate values must be a pointer to an array (a data
structure or an object); the other one must be an index to this array. To preserve the program's operability, the pointer
must be replaced with the offset to the label, and the index must be left unchanged because it is of a constant type.

How can the pointer be distinguished from the index? Unfortunately, there is no universal answer; it is impossible in the
context of the above example.

Instead, consider the following example:

Listing 141: Determining Types in Combined Expressions

MyFunc (char *a, int i)

{
afil="\n";
afi+1]=0;
}
main ()
{

static char buff [ ] ="Hello, Sailor!";
MyFunc (&buff[0], 5);
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The disassembled code of this example, compiled using Microsoft Visual C++, gives the following:

Listing 142: The Disassembled Code for Determining Types in Combined Expressions Compiled Using Visual C++

main proc near ; CODE XREF: start+AF ! p
push ebp
mov ebp, esp
; The stack frame is opened.

push 5
; The immediate value Ox5 is passed to MyFunc.

push 405030h
; The immediate value 0x405030 is passed to MyFunc.

call MyFunc
add esp, 8

; The MyFunc (0x405030, 0x5) function is called.

pop ebp
; The stack frame is closed.

retn
main endp
MyFunc proc near ; CODE XREF: main+At p
arg_0 = dword ptr 8
arg_4 = dword ptr OCh
push ebp

mov ebp, esp
; The stack frame is opened.

mov eax, [ebp+arg_0]
; The value of the arg_0 argument is loaded into EAX.
; (The arg_0 argument contains the immediate value 0x405030.)

add eax, [ebp+arg_4]

; The value of the arg_4 argument is added to EAX.

; (The arg_4 argument contains the value 0x5.)

; This operation indicates that one argument is a constant,
; and the other is either a constant or a pointer.

mov byte ptr [eax], OAh

; The sum of immediate values is used to indirectly address

; the memory, meaning that this is a case of a constant and a pointer.
; But which is which? To answer this question, it is necessary
; to understand the sense of the program code: What did

; the programmer want to achieve by adding pointers?

; Assume that the value Ox5 is a pointer. Is this logical?

; Not quite; if this is a pointer, then where does it point?

; The first 64 KB of the address space of Windows NT

; are reserved for "catching” uninitialized and null pointers.

; It is clear that a pointer cannot be equal to five in any case,

; unless the programmer has used some cunning trick.

; And if 0x401000 is a pointer? It looks like a fair

; and legal offset. But what is coming up now?

; 00401000 db 'Hello,Sailor!",0






Listing 144: The Result of Adding the Constant to the Pointer Is Written into the Pointer-Type Variable

mov  eax, [ebp+arg_0]
; The value of the arg_0 argument is loaded into EAX.
; (Thearg_0 argument contains the immediate value 0x405030.)

add eax, [ebp+arg_4]

; The value of the arg_4 argument (containing

; the value 0x5) is added to EAX. This operation
; indicates that one argument is a constant,

; while the other is either a constant or a pointer.

mov  byte ptr [eax], OAh

; The sum of immediate values is used to address

; the memory indirectly, hence it is either a constant or
; a pointer. But which one? EAX is most likely to be

; a pointer because it is positioned in the first place,

; and var_4 is likely an index because it comes second.

Using LEA to sum constants The LEA instruction is widely used by compilers not only to initialize indexes, but also to
sum constants. Because the internal representation of constants and indexes is identical, the result of adding two
indexes is the same as the sum of the constants that match them (i.e., LEA EBX, [EBX+0x666] == ADD EBX, 0x666).
However, the functionality of LEA considerably outperforms ADD. Consider LEA ESI, [EAX*4+EBP-0x20]. Try to feed
the same to the ADD instruction.

After you encounter the LEA instruction in the code of a program, do not hurry to stick the tag "pointer" on it; the
instruction may be a constant. If the "suspect" is never used to address expressions indirectly, it is not a pointer; rather,
it is a true constant.

Identifying the constants and pointers "visually" Here are some hints that may help you distinguish pointers from
constants:

B |n 32-bit Windows programs, pointers can accept a limited range of values. The region of address
space accessible to processors begins with the offset 0x1.00.00 and stretches to the offset
0x80.00.00.00; in Windows 9x/ME, the accessible space is even smaller — from 0x40.00.00 to
0x80.00.00.00. Therefore, all immediate values smaller than 0x1.00.00 and larger than 0x80.00.00
represent constants, rather than pointers. There is one exception: the number 0, which designates the
null pointerm.

B |f an immediate value looks like an index, check where it points. If a function prolog or a meaningful text
string is located at this offset, it is likely that this is a pointer, although this may be coincidence only.

B | ook at the table of relocatable elements. (See "Step Four: Getting Acquainted with the Debugger.") If
the address of the "suspected" immediate value is present in the table, it is a pointer. However, most
executable files are not relocatable. Such an approach can be used only to examine DLLs, since these
are relocatable by definition.

Incidentally, the IDA Pro disassembler uses all three methods just described to identify the pointers automatically.
Literals and Strings

A[g_ﬁmmmmmmg strings would seem to present few difficulties: If the object referred to by a pointer (see

"Constants and Offsetd") looks like a string, it certainly is a string. Moreover, in most cases, strings are revealed and

identified simply by looking through the dump of a program (if it is not encrypted; encryption is a theme for a separate

discussion). This is all true, but there are some complications.

The first task is automatic detection of strings in the program — megabyte-size dumps cannot be examined manually.
There is a set of algorithms for identifying strings. The simplest, although not the most reliable, is based on the
following two ideas:



B The string consists of a limited set of characters. As a rough approximation, the characters are digits
and letters of the alphabet (including blanks), punctuation marks, and control characters, such as
tabulation or carriage-return characters.

B The string should consist of at least several characters.

Let's agree that if the minimal length of the string is N bytes, it is enough to find all sequences of N or more valid string
characters. If N is small (about 3 or 4 bytes, for example), the search will generate plenty of false hits. If N is large
(about 6 or 8 bytes, for example), the number of false hits will be close to zero and can be ignored, but all short strings
(such as "OK", "YES", or "NO") will not be recognized. In addition to digits and letters, strings may contain
pseudo-graphic elements (an especially frequent feature in console applications), faces, arrows, marks — almost
everything that the ASCII table contains. Is there, therefore, any difference between a string and a random sequence
of bytes? Frequency analysis is useless here; for normal work, it needs at least 100 bytes of text, not strings of just two
or three characters. The problem can be approached from the other side as well: If a string is present in a program,
there must be a reference to it. It is possible to search among immediate values for the pointer to the recognized
string. If it is found, then the chances that it is a string, and not just a random sequence of bytes, increase sharply.

However, it is not quite that easy. Consider the following example:

Listing 145: A Text String within a Program

BEGIN
WriteLn (‘Hello, Sailor!");
END

Compile this example using any suitable Pascal compiler (Delphi or Free Pascal, for example). After loading the
compiled file into the disassembler, walk through the data segment. Soon, the following will appear:

Listing 146: The Contents of the Data Segment of the Compiled Example

.data:00404040 unk_404040 db OEh;

.data:00404041 db 48h ; H
.data:00404042 db 65h ;e
.data:00404043 db6Ch;1
.data:00404044 db6Ch;1
.data:00404045 db 6Fh ;0
.data:00404046 db 2Ch ;,
.data:00404047 db 20h;
.data:00404048 db53h;s
.data:00404049 db 61h;a
.data:0040404A db 69h ;i
.data:0040404B db6Ch; 1
.data:0040404C db 6Fh ;0
.data:0040404D db 72h ;r
.data:0040404E db 21h ;!
.data:0040404F db0;

.data:00404050 word_404050 dw 1332h

This is the sought string, and there is no doubt that it is a string. Now, let's try to work out how it was referred to. In
IDA Pro, this is done by using the <ALT>+<I> key combination and entering the offset of the beginning of the string —
0x404041 — into the search field.

"Search Failed?" How can that be? What is passed to the WriteLn function in that case? Has IDA become faulty?
Looking through the disassembled code also fails to return a result.

It fails because in Pascal, there is a byte at the beginning of strings that contains the length of the string. The value OxE
(14 in the decimal system) is contained in the dump at the offset 0x404040. And how many characters are there in the
string "Hello, Sailor!"? Fourteen. Pressing the <ALT>+<|> combination again and searching for the immediate operand
equal to 0x404040 returns the following:



Listing 147: The Result of Searching for the Imnmediate Operand

.text:00401033 push 404040h
.text:00401038 push [ebp+var_4]
.text:0040103B push 0

.text:0040103D call FPC_WRITE_TEXT_SHORTSTR
.text:00401042 push [ebp+var_4]
.text:00401045 call FPC_WRITELN_END
.text:0040104A push offset loc_40102A
.text:0040104F call FPC_IOCHECK
.text:00401054 call FPC_DO_EXIT
.text:00401059 leave

.text:0040105A retn

Identifying a string appears to be insufficient; in addition, at least its boundaries must be determined.

The following types of strings are most popular: C strings, ending in zero; DOS strings, ending in $; and Pascal strings,
beginning with a one-, two-, or four-byte field that contains the string length. Let's consider each of these types in more
detail.

C strings Also called ASCIIZ strings (Z means Zero at the end), C strings are widely used in operating systems of the
Windows and Unix families. The character "\0" (not to be confused with "0") has a special task, and is interpreted in a
special way — as a string terminator. The length of ASCIIZ strings is limited only by the size of the address space
allocated for the process, or by the size of the segment. Accordingly, the maximum size of an ASCIIZ string is only a
little less than 2 GB in Windows NT/9x, and it is about 64K in Windows 3.1 and MS-DOS. The ASCIIZ string is only 1
byte longer than the initial ASCII string. Despite these advantages, ASCIIZ strings have certain drawbacks. First, an
ASCIIZ string cannot contain zero bytes; therefore, it is not suitable for processing binary data. Second, performing
copying, comparison, and concatenation over C strings incurs significant overhead. Working with single bytes is not
the best variant for modern processors; it is better for them to deal with double words. Unfortunately, the length of
ASCIIZ strings is unknown beforehand; it must be computed "on the fly", checking each byte to see whether or not it is
a string terminator. However, certain compilers use a trick: They terminate the string with seven zeros, making it
possible to work with double words, thus increasing the speed noticeably. Initially, it seems strange to add seven
trailing zeros rather than four, as a double word contains 4 bytes. However, if the last significant character of the string
falls on the first byte of the double word, its end will be taken up with three 0 bytes, but the double word will not equal
zero any more because of the intervention of the first character. Therefore, the following double word should be given
four more 0 bytes, in which case it certainly will equal zero. However, seven auxiliary bytes for each string is too much.

DOS strings In MS-DOS, the function that outputs lines reads the "$" character as the end-of-line character, which is
why programmers call them DOS strings. The term is not absolutely correct — all other MS-DOS functions work
exclusively with ASCIIZ strings. This strange terminator character was chosen when there was no graphic interface in
sight, and console terminal was considered a rather advanced system for interaction with the user. <Enter> could not
be used to end the line, since it was sometimes necessary to enter several lines into the program at once.
Combinations like <Ctrl>+<Z> or <Alt>+<000> were also unsuitable since many keyboards at that time did not contain
the <Ctrl> and <Alt> keys. Computers were mainly used to solve engineering tasks, not accounting ones, and the
dollar sign was the least-used character. Therefore, it was used to signal that the user had finished entering the line —
in other words, as a string terminator. (Yes, the string terminator was entered by the user; it was not added by the
program, as is the case with ASCIIZ strings). Now, DOS strings are encountered very rarely.

Pascal strings Pascal strings have no terminator character; instead, they are preceded by a special field containing the
string length. The advantages of this approach are the possibility of storing any characters in the string (including 0
bytes), and the high speed of processing the string variables. Instead of constantly checking each byte to find a
terminator, memory is addressed only once — when the string length is read. If the string length is known, then it is
possible to work with double words that are the native data type for 32-bit processors, not with single bytes. The only
question is how many bytes to allocate for the size field. Allocating only 1 byte is economical, but the maximum length
of the string will be limited to 255 characters, an insufficient amount in many cases. This type of string is used by
practically all Pascal compilers (Borland Turbo Pascal and Free Pascal, for example); therefore, such strings are called
Pascal strings, or, more exactly, short Pascal strings.

Delphi strings Realizing the absurdity of restricting the length of Pascal strings to 255 characters, the Delphi



developers expanded the size field to 2 bytes, thus increasing the greatest possible length to 65,535 characters.
Although such strings are supported by other compilers (Free Pascal, for example), they are traditionally called Delphi
strings or two-byte Pascal strings.

The restriction to more than 60K can hardly be called a restriction. Most strings are much shorter, and the heap
(dynamic memory), as well as a number of specialized functions, can be used to process large data files (text files, for
example). The overhead (two auxiliary bytes for each string variable) is not substantial enough to be taken into
account. Therefore, Delphi strings, which combine the best features of C and Pascal strings (practically unlimited
length and high processing speed, respectively), seem to be the most convenient and practical type.

Wide Pascal strings Wide Pascal strings have as many as 4 bytes for the size field, thus "limiting" the length to
4,294,967,295 characters, or 4 GB, even more than the amount of memory that Windows NT/9x allocates for "personal
use" by an application process. However, this luxury comes at a high price, as each string has four extra bytes, three
of which will remain empty in most cases. The overhead incurred by using Wide Pascal strings becomes rather
substantial; therefore, this type is rarely used.

Combined types Certain compilers use a combined C-Pascal type. On one hand, the combined C-Pascal type allows
you to process strings at a high speed and store any characters in such strings. On the other hand, it provides
compatibility with a huge quantity of C libraries that work with ASCIIZ strings. Each combined string is forcefully
terminated with zero, but this zero does not appear in the string. Regular libraries (operators) of the language work with
it, as with a Pascal string. When calling functions of C libraries, the compiler passes a pointer to the first character of
the string, not to its true beginning.

Determining string types It is rather difficult to determine the type of a string by its appearance. The presence of zero
terminators at the end of a string is not a sufficient reason to label it an ASCIIZ string: Pascal compilers often add one
or several zeroes to the end of a string to align data on boundaries that are multiples of power-of-2 values.

The string type can be determined roughly by the type of compiler (C or Pascal), and precisely by the processing
algorithm (i.e., by an analysis of the code that handles it). Consider the following example.

Listing 148: Identifying Strings

VAR
s0, sl : String;

BEGIN

s0 :='Hello, Sailor!";

sl :="Hello, World!";

IF sO=s1 THEN WriteLN('OK') ELSE Writeln("Woozl');
END.

After compiling this using Free Pascal, look in the data segment, where the following line can be found:

.data:00404050 aHelloworld db ODh, 'Hello, World!,0 ; DATA XREF:_main+2B1 o

Isn't it reminiscent of an ASCIIZ string? Even if the compiler has yet to be identified, no one would think that 0xD is the
length field rather than the carriage-return character. To test the hypothesis concerning type, proceed according to the
cross-reference found by IDA Pro, or find the immediate operand 0x404050 (the offset of the string) in the
disassembled code manually.

push offset _S1 ; A pointer is passed
; to the string destination.

push offset aHelloWorld ; "\rHello, World!" A pointer is passed
; to the string source.

push OFFh ; This is the maximum length

; of the string.
call FPC_SHORTSTR_COPY

The pointer to the string was passed to the FPC_SHORTSTR_COPY function. From the documentation supplied with
Free Pascal, it is clear that this function works with short Pascal strings. Therefore, the 0xD byte is not a carriage-return



character, but the string length. How would it be possible to discover this without the Free Pascal documentation? It is
hardly possible to get documentation for every compiler. Incidentally, the regular delivery of IDA Pro, including version
4.17, does not contain the signatures of FPP libraries, which have to be created manually.

When the string function is unidentified or does not have a description, the only way out is to investigate the code to
find its operation algorithm. This is shown in the following example.

Listing 149: The Code of the FPC_SHORTSTR_COPY Function

FPC_SHORTSTR_COPY proc near ; CODE XREF: sub_401018+21t p

arg_0 = dword ptr 8 ; Maximum length of the string
arg_4 = dword ptr OCh ; A source string
arg_8 =dword ptr 10h  ; A destination string

push ebp

mov ebp, esp
; The stack frame is opened.

push eax
push ecx
; Registers are saved.

cld

; The direction flag is reset (i.e.,

; the LODS, STOS, and MOVS instructions are forced to increment
; the register pointer).

mov edi, [ebp+arg_8]
; The value of the arg_8 argument is loaded into the EDI register
; (the offset of the destination buffer).

mov  esi, [ebp+arg_4]
; The value of the arg_4 argument is loaded into the ESI register
; (the offset of the source string).

Xor eax, eax
; The EAX register is forced to be zero.

mov  ecx, [ebp+arg_0]
; The value of the arg_0 argument is loaded into ECX
; (the maximum allowable length).

lodsb

; The first byte of the source-string pointer is loaded

; to the ESI register, and ESI is incremented by one.

cmp  eax, ecx

; The first byte of the string is compared with the maximum string
; length. It is already clear that the first character of the

; string is the length. However, let's pretend the purpose

; of the arg_0 argument was unclear, and continue the analysis.

jbe short loc_401168
; If (ESI[0] <= arg_0) goto loc_401168

mov  eax, ecx
; The ECX value is copied to EAX.

loc_401168: ; CODE XREF: sub_401150+141 |
stosb
; The first byte of the source string is written into the
; destination buffer, and EDI is incremented by one.



cmp eax, 7
; The string length is compared with the 0x7 constant.

j1  shortloc_401183
; Is the string length less than 7 bytes?
; Then it is being copied byte by byte!

mov  ecx, edi

; ECXis loaded with the pointer to the destination buffer,
; which was incremented by one. (It was incremented

; by the STOSB instruction when a byte was written.)

neg ecx
; ECXis complemented to zero, NEG(OXFFFF) = 1;
 ECX =1

and ecx, 3
; The three least significant bits are left in ECX,
; and the others are reset. ECX :=1

sub eax, ecx

; The "castrated" ECX is subtracted from EAX (which contains
; the first byte of the string).

repe movsb

; ECX bytes are copied from the source string

; into the destination buffer. In this case, 1 byte is copied.

mov  ecx, eax
; Now, ECX contains the value of the first byte of the string,
; which is decremented by one.

and eax, 3
; The three least-significant bits are left in EAX.
; The others are reset.

shr ecx, 2
; Using the cyclic shift instruction,
; ECXis divided by four (2 to the second power is 4).

repe movsd

; ECX double bytes are copied from ESI to EDI.

; It becomes clear that ECX contains the string length.

; Since the value of the first byte of the string is loaded

; into ECX, it is possible to state confidently

; that the first byte of the string (just

; the byte, not the word) contains the length of this string.
; Therefore, it is a short Pascal string.

loc_401183: ; CODE XREF: sub_401150+1Ct j
mov  ecx, eax
; If the string length is less than 7 bytes, then EAX contains
; the string length for its byte-by-byte copying (see the branch
; jbe short loc_401168). Otherwise, EAX contains the remainder of
; the string's "tail," which could not fill the last double word
; with itself. In one way or another, ECX is loaded
; with the number of bytes to be copied.

repe movsb
; ECX bytes are copied from ESI to EDI.






; not passed to the function,
; since ESI has not been initialized yet!

push edi
; The EDI register is saved.

lea edi, [ebp+var_10]
; EDI is loaded with the pointer to the var_10 local buffer.

mov esi, offset aHelloWorld ; "Hello, World!"

; IDA has recognized the immediate operand as an offset

; of the "Hello, World!" string. If it had not, it would be

; possible to do it manually, given that

; the immediate operand coincides with the offset of the string,
; and that the next instruction uses ESI

; to address memory indirectly.

; Hence, a pointer is loaded into ESI.

repe movsd

; ECX double words are copied from ESI to EDI.

; What does ECX equal? It equals 0x3.

; To convert double words into bytes, multiply 0x3 by 0x4.

; This obtains 0xC, which is one byte shorter than the copied
; "Hello, World!" string, pointed to by ESI.

movsw
; The last byte of the "Hello, World!" string
; Is copied, with the terminating zero.

lea edi, [ebp+var_20]
; EDI is loaded with the pointer to the var_20 local buffer.

mov esi, offset aHelloSailor ; "Hello, Sailor!"

; The ESI register is loaded with the pointer to the
; "Hello, Sailor!" string.

mov  ecx, 3
; ECXis loaded with the number of complete double words contained
; in the "Hello, Sailor!" string.

repe movsd
; The 0x3 double words are copied.

movsw
; A'word is copied.

movsb
; The last byte is copied.
; A function for comparing the strings.

loc_4010AD: ; CODE XREF: _main+4B1 j
mov cl, [eax]
; The contents of the next byte of the
; "Hello, World!" string are loaded.

cmp cl, [edx]
; Is CL equal to the contents of the next byte of the

; "Hello, Sailor!" string?

jnz short loc_4010C9



; If the characters of both strings do not match, jump
; to the loc_4010C9 label.

test cl,cl

jz shortloc_4010D8

; Is the CL register equal to zero? (In other words, has

; the "0" character been seen in the string?).

; If so, jump to loc_4010D8.

; Now the string type can be determined.

; The first byte of the string contains the first character

; of the string, not the string length. In addition, each byte of

; the string is checked for being a "0" character. Hence, these are
; ASCIIZ strings!

mov cl, [eax+1]
; The next character of the "Hello, World!" string is loaded into CL.

cmp cl, [edx+1]
; Itis compared with the next character of "Hello, Sailor!".

jnz short loc_4010C9
; If the characters do not match, the comparison finishes.

add eax, 2
; The pointer of the "Hello, World!" string is moved ahead
; by two characters.

add edx, 2

; The pointer of the "Hello, Sailor!" string is moved ahead

; by two characters.

test cl,cl

jnz short loc_4010AD

; Repeat matching until the terminating character of the string
; Is reached.

loc_4010C9: ; CODE XREF: _main+35tj_main+411 j
jz shortloc_4010D8
; See the "Conditional IF-THEN-ELSE Statements" section.

; Outputting the string "Wooz!"
push offset aWoozl ; format
call _printf

pop ecx

jmp  short loc_4010E3

loc_4010D8: ; CODE XREF: _main+39tj_main+4D! |
; Outputting the string "OK"
push offset aOk ; format
call _printf
pop ecx
loc_4010E3: ; CODE XREF: _main+5At ]

Xor —eax, eax
; The function returns zero.

pop edi
pop esi
; The registers are restored.

mov  esp, ebp
pop ebp






; This is illustrative: If it were someone else's program under
; examination, this disassembler trick would be confusing.

mov dword ptr [ebp+var_10], eax
; The first 4 bytes of the string are copied
; into the var_10 local variable.

mov  ecx, dword ptr aHelloWorld+4
; The 4th through 8th bytes of the string "Hello, World!"
; are loaded into ECX.

mov [ebp+var_C], ecx

; These bytes are copied into the var_C local variable.

; However, we already know that this is not a var_C variable,
; but a part of the string buffer.

mov  edx, dword ptr aHelloworld+8
; The 8th through 12th bytes of the string "Hello, World!"
; are loaded into EDX.

mov [ebp+var_8], edx
; These bytes are copied into the var_8 local variable or,
; to be more accurate, into the string buffer.

mov  ax, word ptr aHelloWorld+0Ch
; The remaining two-byte tail of the string is loaded into AX.

mov [ebp+var_4], ax

; The tail is written into the var_4 local variable. Thus,

; fragments of the string are copied into the following local

; variables: int var_10; into var_0C; int var_8; short int var_4.
; Hence, this is actually one local variable:

; char var_10[14].

mov  ecx, dword ptr aHelloSailor ; "Hello, Sailor!"
; The same copy operation is performed on the
; "Hello, Sailor!" string.

mov dword ptr [ebp+var_20], ecx
mov  edx, dword ptr aHelloSailor+4
mov [ebp+var_1C], edx

mov eax, dword ptr aHelloSailor+8
mov [ebp+var_18], eax

mov  cx, word ptr aHelloSailor+0Ch
mov [ebp+var_14], cx

mov dl, byte_40604E

mov [ebp+var_12], dlI

; The "Hello, Sailor!" string is copied
; into the char var_20[14] local variable.

lea eax, [ebp+var_20]
; The register is loaded with the pointer to the var_20 local
; variable, which contains the "Hello, Sailor!" string.

push eax ; const char *
; Itis passed to the strcmp function.
; From this, it can be inferred that var_20 actually stores
; a string, not a value of the int type.

lea ecx, [ebp+var_10]
; The pointer to the var_10 local variable, which
; stores the "Hello, World!" string, is loaded into ECX.









inverted; the code of the program merely may become less understandable.

Now let's consider how the complete statement IF (condition) THEN {statementy; statementN;} ELSE {statement1y;
statementlM;} may be converted. Some compilers act like this:

Listing 158: The Result of Converting the Complete IF-THEN-ELSE Statement

IF (condition) THEN do_it
/I The ELSE branch is executed.
statemently;

statement1N;
GOTO continue:

do_it:
/I The IF branch is executed.
statementy;

statementM;
continue:

Others convert it like this:

Listing 159: An Alternate Result of Converting the IF-THEN-ELSE Statement

IF (NOT condition) THEN else
/I The IF branch is executed.
statementy;

statementm;
GOTO continue

else:
/I The ELSE branch is executed.
statemently;

statement1m;
continue:

The latter inverts the condition value; the former does not. Therefore, without knowing the compiler's preferences, it will
be impossible to figure out what the original code of the program looked like. However, this does not create any
problems, since it is always possible to write the condition in a convenient form. For example, if you don't like the
statement IF (c<>0) THEN a=b/c ELSE PRINT "Error!", you can write IF (c==0) THEN PRINT "Error!" ELSE a=b/c.

Types of conditions Conditions can be simple (elementary) or complex (compound). An example of the former is if
(a==b)...; an example of the latter is if ((a==b) && (a!=0)) .... Thus, any complex conditional expression can be
decomposed into several simple conditional expressions. Let's start with simple conditions.

There are two types of elementary conditions: relational conditions (with the operators "less", "equal”, "less than or
equal”, "not equal”, "greater than", and "greater than or equal”, designated as <,==,>, <=, I=, and >=, respectively) and
logical conditions (with the operators AND, OR, NOT, and exclusive OR, designated in C notation as &, |, !, and *,
respectively). Well-known hacking authority Matt Pietrek adds testing the bits in here as well. In this book, we will cover
this topic separately.

A true expression returns the Boolean value TRUE; a false one returns FALSE. The internal (physical) representation of
the Boolean variables can vary, depending on a particular implementation. Generally, FALSE is represented by zero,
and TRUE is represented by a nonzero value. TRUE is often represented by 1 or —1, but this is not always the case. For
example, IF ((a>b) !=0) ... is correct, and IF ((a>b)==1) ... is bound to a particular implementation, which is undesirable.



Note that IF ((a>b) !=0)... does not check the a and b variables for an inequality to zero; rather, it checks the result of
their comparison. Consider the following example: IF ((666==777)==0) printf("WoozI!"). What will be displayed on the
screen by launching this example? "Wooz!!", of course.

Neither 666 nor 777 is equal to zero, but 666!=777. Therefore, the condition (666==777) is false and equal to zero.
Incidentally, writing IF ((a=b)==0)... would give a different result: The value of the variable b would be assigned to the
variable a, and then checked for equality to zero.

Logical conditions mostly are used to bind two or more elementary relational conditions into a compound condition (for
example, IF ((a==b) && (a!=0)) ...). When compiling the program, the compiler always resolves compound conditions
into simple ones (in this example, as IF a==b THEN IF a=0 THEN...). At the second stage, the conditional statements
are replaced by GOTO.

Listing 160: The Compiler Resolves Compound Conditions into Simple Ones

IF al=b THEN continue

IF a==0 THEN continue

...l The code of the condition
:continue

... I The rest of code

The order of computing the elementary conditions in a complex expression is at the compiler's discretion. The only
guarantee is that the conditions bound by the logical AND will be tested from left to right in the order they appear in the
program. If the first condition is false, the next one will not be computed, which allows us to write code like if ((filename)
and (f=fopen(&filename[0], "r™)))... If the filename pointer points to nonallocated memory area (i.e., contains zero, a
logical FALSE), the fopen function is not called and the crash does not occur. These types of computations have been
called fast Boolean operations.

Now, let's proceed to the problem of identifying logical conditions and analyzing complex expressions. Let's take the
following expression: if ((a==b) &&(a!=0))... and see what happens when it is compiled.

Listing 161: The Result of Compiling the if ((a==b) && (a!=0)) Expression

IF al=b THEW continue
IF &= THEW <ontimue
ce./S This code i executed
A 1 at least one of the

S aborre conditiony iz faloe,
foonTinig - '
// The rest of the code follows.

Obviously, this code gives itself away with a series of conditional jumps to the same label. Note that each elementary
condition is tested for being true or false, and the label is located after the code that immediately follows the branch
statements.

Identifying the logical OR operation is more difficult because of the ambiguity of its translation. Let's consider this on
the example of the if ((a==b) || (a!=0)) ... statement. It can be broken into elementary statements in this way:

Listing 162: Breaking if ((a==b) || (a!=0)) into Elementary Statements

IF a==jp THEN do_it
IF al=) THEN do it
Foto contirme
1do it = -—

westf Tha code I3 edecuted
ff AL at least oo of the




IF a==p THEM
IF ae= THEX




The way out is to use a two-level system of translation. At the first stage, the elementary conditions are converted into
an intermediate form that clearly and consistently represents the interrelation of the elementary operations. Then, the
final translation is put into any suitable notation (for example, C, BASIC, or Pascal).

The only problem is how to choose the successful intermediate form. There are many options, but to save paper, let's
consider just one: trees.

Let's represent each elementary condition as a node with two branches going to the appropriate states: the condition is
true and the condition is false. For clarity, let's designate "false" as a triangle and "true" as a square. Let's agree
always to place "false" on the left and "true" on the right. We will call the obtained design a nest.

Nests may be joined into trees. Each node can join only one nest, but each nest can join several nodes. Let's consider
this in more detail.

Let's join two elementary conditions by a logical AND operation, taking the example ((a==b) && (a!=0)). Let's take the
first condition from the left, (a==b), and place it in a nest with two branches, the left one corresponding to a'=b (i.e., the
condition a==b is false), and the right one corresponding to the opposite case. Then, let's do the same with the second
condition, (a!=0). This gives two nests; the only thing that remains is to join them with the logical AND operation. As you
know, AND tests the second condition only when the first condition is true. Hence, the (a!=0) nest should be hitched to
the right branch of (a==b). The right branch (a!=0) will correspond to the ((a==b) && (a!=0)) expression being true, and
both left branches will correspond to this expression being false. Let's designate the first case with the do_it label, and
the second case with the continue label. As a result, the tree should look like the one shown in

((a==b)&E[al=0)]

&==D

II -
LI_..,—- il [ ]
Continue: do_it

Figure 23: A graphical representation of the AND operation as a binary tree (which shows only one way to get
into the do_it point)

For better presentation, let's mark the route from top of the tree to the label do_it with a thick arrow. It is only possible
to get to do_it by one route. Graphically, the AND operation looks like this:

Let's proceed to the logical OR operation and consider the following expression: ((a==b) || (a!=0)). If the (a==b) condition
is true, the entire expression is also true. Hence, the right branch of the (a==b) nest is connected to the do_it label. If the
(a==b) condition is false, the next condition is tested. This means that the left branch of (a==b) is connected to the (a!=b)
nest. If the (al=b) condition is true, the entire ((a==b) || (a!=0)) expression is also true; if the (a!=b) condition is false, the
entire expression is also false, since the (a!=b) condition is tested only when the (a==b) condition is false. It can be
concluded that the left branch of the (al=b) nest is connected to the continue label, and the right one to do_it. Note that it
is possible to get to do_it by two different routes. The OR operation graphically looks like it is shown in ig. 24.
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((a==h)&&(al=0))

a==

do_it
Figure 24: A graphical representation of the OR operation as a binary tree (which shows two ways to get to the
do_it point)

So far, logical operations have been represented by trees. However, trees were meant for just the opposite purpose
— to convert the sequence of elementary conditions into intuitively clear representation. Let's try this with the following
code:

Listing 165: Converting a Sequence of Elementary Conditions

IF a==b THEN check_null

IF al=c THEN continue

check_null:

IF a==0 THEN continue

...Il This is code pertaining to the condition.
continue:

...Il The rest of the code follows.

Let's take the (a==b) condition and put it into the nest. If it is false, the (a!=c) condition is tested, meaning the (a!=c)
nest is connected to the left branch of (a==b). If the (a==b) condition is true, control is transferred to the check _null label,
which tests the (a==0) condition for being true; hence, the (a==0) nest is connected to the right branch of (a==b). In turn,
if the (al=c) condition is true, control is passed to the continue label; otherwise, it is passed to check_null. This means
that the (a!=0) nest is connected both to the right branch of (a==b) and to the left branch of the (a'=c) nest.

Certainly, this is easier to draw than to describe. A correct sketch should produce a tree similar to the one in .
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([Z==bfllla==c)5&[a™=0})
a==b
T
(a==0)
Fako True
J 2
do it Continue:

Figure 25: A graphical representation of a complex expression

The (a==0) nest can be reached in two ways: through (a==b), or through the (a==b) - (a!=c) chain. Hence, these nests
are joined by the OR operation. Logically, this producesif ((a==b) || !(a!=c)...). Where has this NOT come from? The
(a==0) nest is connected to the left branch of the (al=c) nest (i.e., it is checked for being true). Now, NOT can be
removed by inverting the if ((a==b) || (@==c)...)... condition It is possible to move further — from the (a==0) nest to do_it
— only in one way, meaning this is a junction through the AND operation. Therefore, let's write if (((a==b) [|(a==C)) &&
I(a==0))... and get rid of superfluous brackets and the NOT operation. The result obtained is ((a==b) || (a==c) && (a!=0))
{/l The code pertaining to the condition}.

This is a simple method. It is not even necessary to build trees manually, as a program can be written to do the work.

Analyzing specific implementations Before translating the IF (a complex condition) THEN {statement1: statementN} ELSE
statement into a machine language, remember that the IF-THEN-ELSE statement can be represented through IF-THEN,
the THEN {statement1: statementN} aggregate expression can be represented by THEN GOTO do_it, and any complex
condition can be reduced to a sequence of elementary relational conditions. Therefore, at a basic level, the operation
can be reduced to statements of the type IF (a simple relational condition) THEN GOTO do_it, which then can be used like
building blocks to produce the necessary combination.

Let's consider relational conditions, or the results of comparing two numbers. In Intel 80x86 microprocessors, integer
values are compared using the CMP instruction, and floating-point values are compared using the coprocessor
instructions such as FCOM, FCOMP, FCOMPP, FCOMI, FCOMIP, FUCOMI, and FUCOMIP. You should be familiar with
assembler, so these instructions will be considered only briefly.

The CMP instruction This is equivalent to the SUB integer subtraction operation with one exception — unlike SUB,
CMP does not modify the operands. It only affects the flags of the main processor: the zero flag, the carry flag, the sign
flag, and the overflow flag.

The zero flag is set to 1 if the result of subtraction is zero (i.e., if the operands are equal).
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The carry flag is set to 1 if, during subtraction, there was a borrow from the most significant bit of the minuend (i.e.,

the minuend is less than the subtrahend).

The sign flag is set equal to the most significant bit (the sign bit) of the computation result (i.e., if the result of
computation is a negative number, the sign flag is set to 1).

The overflow flag is set to 1 if the result of computation "climbs into" the most significant bit, leading to the loss of the
number's sign.

To test the state of flags, a group of instructions of conditional jumps are performed if a certain flag ( of flags)
is set (or cleared). The instructions used to analyze the result of comparing the integers are listed in [Table 1§ (? means
that the state is not defined.)
Table 16: The Relational Operations and Their Processor Instructions
The state of the flags
Condition Instruction
Zero flag Carry flag Sign flag
a== 1 ? ? Jz JE
al=b 0 ? ? INZ JNE
Unsigned ? 1 ? JC JB INAE
a<b
Signed ? ? 1=0OF JL INGE
Unsigned 0 0 ? JA JINBE
a>b
Signed 0 ? ==0OF JG JNLE
Unsigned ? 0 ? JAE JNB JNC
a>=b
Signed ? ? ==0F JGE JNL
Unsigned (ZF==1) || (CF==1) ? JBE INA
a<=b
Signed 1 ? 1=0OF JLE ING
Table 17: The Correspondence of the CPU and FPU Flags
7 6 5 4 3 2 1 0
CPU
SF ZF - AF - PC - CF
15 14 13 12 11 10 9 8
FPU
Busy! C3(zZF) TOP C2(PF) C1 CO(CF)

Generally, the IF (an elementary relational condition) THEN do_it statement is translated into the following processor
instructions:

cmpa, b
jxx do_it
continue:

Other instructions that do not affect the processor flags (MOV or LEA, for example) may be inserted between CMP and

JXX.

Comparing floating-point numbers The FCOMxx instructions that compare floating-point numbers (see ), in
contrast to instructions that compare integers, affect the coprocessor registers, rather than the main-processor



registers. At first glance, this seems reasonable. However, there are no conditional-jump instructions controlled by the
coprocessor flags. Additionally, the coprocessor flags are not accessible directly — to read their status, the SW
coprocessor status register must be loaded into memory or into a general-purpose register of the main processor.

Table 18: The Instructions for Comparing Floating-Point Values

Instruction Purpose Result
FCOM Compares the floating-point value located on top of the coprocessor stack with
the operand located in memory or on the FPU stack
. . The FPU
FCOMP Same as FCOM, but pops the floating-point value off the top of the stack ,
ags
FCOMPP Compares two floating-point values located on top of the coprocessor stack,
then pops them off the stack
FCOMI Compares the floating-point value located on top of the coprocessor stack with
another floating-point value located on the FPU stack
FCOMIP Compares the floating-point value located on top of the coprocessor stack with
the floating-point value located on the FPU stack, then pops it off the stack
The CPU
FUCOMI Makes an unordered comparison of the floating-point value located on top of flags

the coprocessor stack with the floating-point value located on the FPU stack

FUCOMIP Makes an unordered comparison of the floating-point value located on top of
the coprocessor stack with the floating-point value located on the FPU stack,
then pops the value off top of the stack

Analyzing the flags manually is worse. When comparing integers, the flags controlling the conditional jump are not
taken into account — producing, for example, CMP A, B; JGE do_it (jump IF A is greater OR equal to B). Here, the trick
will not work. However, it is possible to cheat and copy the coprocessor flags to the flag register of the main processor,
then use native conditional-jump instructions of Jxx type.

The coprocessor flags cannot be copied to the main processor directly. This operation should be carried out in two
stages: The FPU flags have to be loaded into memory or into any general-purpose register available, then pushed into
the CPU flags register. Only one instruction, POPF, is capable of directly modifying the CPU flags register. All that
remains is to figure out which coprocessor flags correspond to which processor flags. Surprisingly, flags 8, 10, an

the coprocessor coincide with flags 0, 2, and 6 of the main processor — with CF, PF, and ZF, respectively (see ﬁ

). Therefore, the most significant byte of the coprocessor flags register can be pushed into the least significant byte
of the main-processor flags register without any conversion. However, bits 1, 3, and 5 of the CPU flags register, which
are not used in current versions of the processor, but are reserved for the future use, will be distorted. The values of
the reserved bits must never be changed. Who can guarantee that, tomorrow, one of them will not be responsible for
the self-destruction of the processor? This is a joke, of course, but many a true word is spoken in jest.

Fortunately, no complex manipulations are necessary. The pracessor developers have provided a special instruction,
SAHF, that copies bits 8, 10, 12, 14, and 15 of the AX. From , it is possible to work out that bit 7 of the CPU
flags register contains the sign flag, and the corresponding bit of the coprocessor flags register contains the FPU busy
flag!

Therefore, it is not possible to use signed conditional jumps (JL, JG, JLE, JNL, JNLE, JGE, and JNGE) to analyze the
result of comparing the floating-point numbers. These jumps work with the sign and overflow flags. If, instead of the
sign flag, these instructions receive the FPU busy flag, and the overflow flag is left in a suspe te, the
conditional jump will not work as desired. Unsigned jump instructions (JE, JB, JA, etc. — see | able 16) should be used
instead.

This does not mean that it is impossible to compare the signed floating-point numbers — it is possible. But, for the
analysis of the comparison results, only unsigned conditional jumps should be used.



Thus, the floating-point statement IF (an elementary relational condition) THEN do_it can be translated into one of the two

following sequences of the processor instructions:

Listing 166: Two Variants of the Processor Instructions

fld [a] fld [a]

fcomp [b] fcomp [b]

fnstsw ax fnstsw ax

sahf test ah, bit_mask
JXX do_it jnz do_it

The first variant is more illustrative, but the second one works faster. However, only Microsoft Visual C++ may be
capable of generating this code. Borland C++ and Watcom C have an inclination for the instruction SAHF, which slightly
slows but drastically simplifies the code analysis. An instruction like JNA would tell even a half-asleep hacker that the

jump is being carried out when a<=b. Checking the bit mask such as ]
pause for thought, or mechanically consult a reference manual. (See

AH, 0x41/INZ do_it would make us take a
able 14.)

In this sense, the instructions of the FUCOMIxx family are more convenient: They return the result of comparison
directly into registers of the main processor. Unfortunately, only Pentium Pro understands them; they are lacking in
earlier microprocessors. Therefore, you will rarely encounter them in real programs. Pages 3—-112 of Intel's "Instruction

Set Reference" describe these instructions in detail.

Table 19: The Coprocessor Flags

FPU flags Purpose Bit mask
OE Overflow flag #0x0008
CO Carry flag #0x0100
C1 — #0x0200
Cc2 Parity flag #0x0400
c3 Zero flag #0x4000

Table 20: The State-Of-Flag Registers for Relational Operations

Relation The state of the FPU flags SAHF instruction Bit mask
a<pl] CO == JB #0x0100 ==
a>b C0==0 C3==0 JNBE #0x4100==0
a==b C3== Jz #0x4000 == 1
al=b C3== JINZ #0x4000 ==
a>=b C0==0 JNB #0x0100 == 0
a<=b CO == C3===1 JINA #0x4100 ==
UThe left operand of the instruction that compares floating-point values ig; the right operand ish.




Table 21: The Behavior of Compilers

Compiler The algorithm that analyzes the FPU flags...

Borland C++ ...copies the coprocessor flags to the flags register of the main processor.
Microsoft Visual C++ ...tests the bit mask.

Watcom C ...copies the coprocessor flags to the flags register of the main processor.
Free Pascal ...copies the coprocessor flags to the flags register of the main processor.

Boolean set-on-condition instructions Starting with 80386 chips, the language of Intel microprocessors was enriched
with the instruction for setting a byte on condition, SETxx. This instruction sets its single operand to 1 (Boolean TRUE) if
the condition xx is true, and clears it to 0 (Boolean FALSE) if the condition xx is false.

The SETxx instruction is widely used by optimizing compilers to eliminate the branches (i.e., to remove conditional
jumps), since branches clear the processor pipeline, seriously reducing the program performance.

Table 22: The Boolean Set-On-Condition Instructions

Instruction Relationship Condition
SETA SETNBE Uns|gned CF==0&& ZF ==
a>b
SETG SETNLE Signed ZF == 0 && SF == OF
SETAE SETNC SETNB Unsigned CF ==
a>=b
SETGE SETNL Signed SF == OF
SETB SETC SETNAE Unsigned CF ==
a<b
SETL SETNGE Signed SF 1=0F
SETBE SETNA Unsigned CF==1]||ZF ==
a<=b
SETLE SETNG Signed ZF==1||SF!=OF
SETE SETZ a==| — ZF ==
SETNE SETNZ al=0 — ZF ==

Other conditional instructions 80x86 family of microprocessors supports a set of the conditional instructions that
generally do not involve the relational operation. Therefore, these instructions are rarely used by compilers. However,
they are used frequently in assembler inserts. They deserve to be mentioned at least briefly.

Conditional-jump instructions. In addition to those described in , there are eight conditional-jump instructions:
JCXZ, JECXZ, JO, JNO, JP (also known as JPE), JNP (also known as JPO), JS, and JNS. Of these, only JCXZ and JECXZ
have a direct relationship to the comparison operations. Optimizing compilers occasionally replace the CMP [E]CX, 0\JZ
do_it construction with the shorter equivalent J[E]JCXZ do_it.

The JO and JNS conditional jumps are mainly used in mathematical libraries to process the long numbers (1024-bit
integers, for example).

Besides basic applicability, the JS and JNS conditional jumps are frequently used to quickly test the value of the most
significant bit.

The JP and JNP conditional jumps are used only in exotic assembler inserts.



Table 23: The Auxiliary Conditional Jumps

Instruction Jump if... Flags
JCXz ...the CX register equals zero. CX ==
JECXZ ...the ECX register equals zero. ECX==0
JO ...there is an overflow. OF ==
JINO ...there is no overflow. OF ==
JP/IPE ...parity of the least significant byte of the result is even. PF==1
JNP/IPO ...parity of the least significant byte of the result is odd. PF==0
JS ...the sign bit is set. SF ==
JINS ...the sign bit is cleared SF ==

Conditional-move instructions. The processors of the Pentium family starting from Pentium Pro, Pentium Il, Celeron
support the conditional-move instruction CMOVxx, which sends a value from the source to the destination if the
condition xx is satisfied. This leads to more effective code that does not contain branches and fits into a smaller
number of instructions.

Let's consider the IF a<b THEN a=b statement. Compare how it is translated using conditional-jump (left) and
conditional-move (right) instructions.

Listing 167: Comparing a Conditional Jump and a Conditional Move

cmpa, b
jae continue:
mov a, b
continue:

cmpa, b
cmovb a, b

Unfortunately, at the time of writing, no compiler seemed to use CMOVxx when generating cod

are so obvious that advanced optimizing compilers should emerge in the near future.

e. However, the benefits

Table 24

presents a brief

description sufficient for disassembling the programs. See pages 3-59 of the "Instruction Set Reference" guide from
Intel for more detailed explanations.



Table 24: The Main Conditional-Move Instructions

Instruction Relationship Condition

CMOVA CMOVNBE Unsigned CF==0&& ZF==0
a>b

CMOVG CMOVNLE Signed ZF ==0&& SF==OF

CMOVAE CMOVNC CMOVNB Unsigned CF=0
a>=b

CMOVGE CMOVNL Signed SF==OF

CMOVB CMOVC CMOVNAE Unsigned CF ==
a<b

CMOVL CMOVNGE S|gned SF 1= OF

CMOVBE CMOVNA Unsigned CF==1||ZF==1
a<=b

CMOVLE CMOVNG Signed ZF==1|| SF != OF

CMOVE CMovz a==b — ZF ==

CMOVNE CMOVNZ al=0 — ZF==0

Boolean comparisons The logical FALSE corresponds to the zero value, and the logical TRUE to any nonzero value.
Thus, Boolean relationships are reduced to comparing the value of a variable with zero. The IF (a) THEN do_it
statement is translated into IF (a!=0) THEN do_it.

Practically all compilers replace the CMP A, 0 instruction with the shorter instructions such as TEST A, A or OR A, A. In
all cases, if A==0, the zero flag is set; if Al=0, the zero flag is cleared.

Therefore, code like TEST EAX, EAX\JZ do_it in the disassembiler listing indicates a Boolean comparison.

Identifying the "(condition)?do_it:continue" construction In C, the statement such as a=(condition)?do_it:continue
generally is converted into IF (condition) THEN a=do_it ELSE a=continue. However, the results of compiling these
statements are not always the same.

For a variety of reasons, the ? operator is more amenable to optimization than the IF-THEN-ELSE branch, as the
following example demonstrates.

Listing 168: Identifying the Conditional Operator

main()

{

inta; /I The variable is not initialized on purpose.
int b; /I Therefore, the compiler does not replace

/I it with a constant.

a=(a>0)?1:-1; // A conditional operator

if (b>0) // A branch
b=1;

else
b=-1;

return a+b;

}

If we disassemble this example compiled using Microsoft Visual C++, we will get the following result:

Listing 169: The Disassembled Code of the Test Example Compiled Using Visual C++




push ebp
mov ebp, esp
; The stack frame is opened.

sub esp, 8
; The space is allocated for local variables.

; This is the beginning of the ? conditional operator.
Xor eax, eax
; EAX is zeroed.

cmp [ebp+var_a], 0
; The variable is compared with zero.

setle al
; The value Ox1 is placed into al if var_a <= 0.
; The value O is placed into al if var_a > 0.

dec eax

; EAX is decremented by 1.

; Now, if var_a > 0, then EAX :=-1,
;and if var_a <=0, then EAX := 0.

and eax, 2

; All bits are cleared except for the second bit from the left.
; Now, if var_a > 0, then EAX := 2,

;and if var_a <=0, then EAX := 0.

add eax, OFFFFFFFFh

; Ox1 is subtracted from EAX.

; Now, if var_a > 0, then EAX =1,
; and if var_a <=0, then EAX := -1.

mov [ebp+var_a], eax

; The result is assigned to the var_a variable.

; This is the end of the ? operator.

; Note that not a single conditional jump was needed
; to translate the conditional operator -

; the compiler has managed to do without branches.

; This is the beginning of the IF-THEN-ELSE branch.
cmp [ebp+var_b], 0
; The var_b variable is compared with zero.

jle  short else
; Jump if var_b <= 0.

; The var_b > 0 branch
mov [ebp+var_b], 1
; The value 1 is assigned to var_b.

jmp  short continue
; Jump to the continue label.

; The var_b > 0 branch
else: ; CODE XREF: _main+1D1 j
mov [ebp+var_b], OFFFFFFFFh
; The value -1 is written into the var_b variable.
continue: ; CODE XREF: _main+261j
; This is the end of the IF-THEN-ELSE branch.
; Note that the implementation of the IF-THEN-ELSE statement
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Figure 27: Translating short jumps

space, and all these problems disappear.

Listings of examples To better understand the points made in this section, let's consider several examples using

A similar approach can be used when the destination address is located in a different segment. It is enough to replace
the near unconditional jump with the far one. To the great pleasure of compiler developers — and of hackers who
disassemble programs — in 32-bit mode, the conditional jump "strikes" within the limits of the entire 4 GB address

various compilers. Let's begin with analysis of elementary integer relationships.

Listing 173: Elementary Integer Relationships

#include <stdio.h>

main()

{

int a; int b;

if (a<b) printf("a<b");

if (a>b) printf("a>b");

if (a==b) printf("a==b");
if (al=b) printf("a!=b");
if (a>=b) printf("a>=b");
if (a<=b) printf("a<=b");

Disassembled code of this example compiled using Microsoft Visual C++ looks as follows:

Listing 174: Compiling Elementary Integer Relationships Using Visual C++

main proc near ; CODE XREF: start+AF1 p
var_b = dword ptr -8
var_a = dword ptr -4

push ebp

mov ebp, esp
; The stack frame is opened.

sub esp, 8

; Memory is allocated for the var_a and var_b local variables.

mov  eax, [ebp+var_a]
; The value of the var_a local variable is loaded into EAX.

cmp eax, [ebp+var_b]
; The value of the var_a local variable is compared
; to the value of the var_b variable.

jge short loc_40101B
; If var_a >= var_b, jump to continue; otherwise,
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; print the strings.

; Note that the original code looked like this:

;if (@ < b) printf("a < b");

; In other words, the relational condition has been inverted
; by the compiler.

; The JGE instruction is signed; therefore,

; the var_a and var_b variables

; are also signed.

; The DO_IT branch

push offsetaAB 4 ;"a<b"
call _printf

add esp, 4

; Printing the strings "a < b".

; I/ The CONTINUE branch

loc_40101B: ; CODE XREF: main+Ct j
mov  ecx, [ebp+var_a]
; The value of the var_a variable is loaded into ECX.

cmp ecx, [ebp+var_b]
; The value of the var_a variable is compared with the var_b variable.

jle  short loc_401030

; Jump if var_a <= var_b; otherwise, print the strings.

; Hence, the strings are printed if |(var_a <= var_b), or

; if var_a > var_b. Therefore, the original code of the program
; looked as follows.

; if (@ > b) printf("a > b");

push offset aAB_3; "a>b"

call _printf
add esp, 4
loc_401030: ; CODE XREF: main+211j

mov edx, [ebp+var_a]
; The value of the var_a variable is loaded into EDX.

cmp edx, [ebp+var_b]
; The value of the var_a variable is compared
; with the var_b variable.

jnz  short loc_401045

; Jump if var_al=var_b; otherwise, print the strings.

; Hence, the original code of the program looked like this:
; If (a==b) printf("a==b");

push offset aAB ; "a==b"

call _printf
add esp, 4
loc_401045: ; CODE XREF: main+361j

mov eax, [ebp+var_a]
; The value of the var_a variable is loaded into EAX.

cmp eax, [ebp+var_b]
; The value of the var_a variable is compared

; with the value of the var_b variable.

jz shortloc_40105A
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ar A = QWird pteo =4
push  ebp
b=y ebp, esp
; The stack frame i3 opened.

sl “sp, 1Ch
j Memory is allocated for local wariables.

= lekprvar_d], ©

a

i The value of the var d wariable iz compared with zero

iz ghort log 1B

i If the var o varisble i3 egual to zers, daop to

j the loac 1R label; otherwise, print the YTRUET string.
i This can be represented schematically as follows:

Jvar d == 0

T
loc_1B printf {"TRUE"}
push  offset $36341 § "TRUE"
call  pringd
add &3p, 4
Jop short loc 44

;
i Thiz iz a dead givesway. Let's include this dump

7 AREG Thd GRISTING Coed.

war o ==
- 15

L T

loc_1B printf (~TRUE™)
i loc 44
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i
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e
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"
i

=] |ebprévar_a), 0
! The values of the var a varfable ls compared with zaro.

jon= abhort lul;_:i'.l'

¢ Jump to loc 37 Af var a i3 not equal to zero.
:

A Jvar d o=

- -
1 log 1B peintf ( "TRUE™)
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Figure 28: The logical tree

Two branches grow from the var_d!=0: nest: the right one leading to printf("TRUE") and, further, to the end of the
IF-THEN [-ELSE] statement; and the left one passing through a crowd of nests before it reaches Z. The situation looks
like this: If the var_d variable is not equal to zero, print "OK" and finish the job; otherwise, carry out additional tests. In
other words, IF (var_d !=0) THEN printf("OK") ELSE ..., and the left branch of the nest (var_d ! = 0) is the ELSE branch.
Let's analyze it.

From the (var_a <= var_b) nest to the printf('OK") nest, there are two routes: ! (var_a <=var_b) — ! (var_a == 0) and !
(var_a!=var_c) — ! (var_c == 0). If there is an alternative, there must always be an OR operation: either the first way, or
the second. At the same time, the nests of both ways are connected serially; they are joined by an AND operation.
Therefore, this branch should look like this: IF ((var_a > var_b) && (var_0 != 0)) || (var_a == var_c) && (var_c != 0))
printf("OK"). Putting ELSE into the first IF statement gives: IF (var_d !=0) THEN printf("OK") ELSE IF ((var_a > var_b) &&
(var_0!=0)) || (var_a == var_c) && (var_c != 0)) printf("OK").

The analysis of the second tree is trivial: IF (var_c==var_d) printf "+++"). The source code of the program being
disassembled looked like the following:

Listing 180: The Source Code of the Program Being Disassembled

u_int a; u_int b; ?_int c; ?_int d;

if (d) printf("TRUE");

else

if ((a>b) && (a!=0)) || ((a==c) && (c!=0))) printf("OK\n");

if (c==d) printf("+++\n");

Therefore, the a and b variables are unsigned int, since the result of comparison was analyzed using the JNB unsigned
relational instruction. Unfortunately, the c and d variables are impossible to determine. Nevertheless, we were able to
reconstruct a complex condition using trees, in which it would be easy to get lost.
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Optimizing the branches Let's examine a tangled code. (The SETGE instruction sets the destination operand to 1 if the
SF and OF status flags are equal (i.e., SF == OF); otherwise, the destination operand is set to zero.)

Listing 181: A Tangled Code Produced by an Optimizing Compiler

mov  eax, [var_A]

XOr  ecx, ecx

cmp eax, 0x666
setge cl

dec ecx

and ecx, OXFFFFFCO0
add ecx, 0x300

mov [var_zzz], ecx

At first glance, this fragment seems to have been borrowed from a crafty protection mechanism. In fact, it is the result
of compiling the following trivial statement: if (a<0=666) zzz=0x200 else zzz=0x300, whose nonoptimized form looks as
follows:

Listing 182: The Nonoptimized Form of the Tangled Code

mov eax, [var_A]

cmp eax, 0x666

jge Label_1

mov ecx, 0x100

jmp Label_2
Label_1:

mov ecx, 0x300
Label_2:

mov [var_zzz], ecx

Why did the compiler reject this variant? The variant is shorter, but it contains branches (i.e., unplanned changes of the
normal flow of the program's execution). Branches negatively affect performance — they clear the pipeline, which in
contemporary processors is very long and cannot be refilled quickly. Therefore, removing branches by using
mathematical calculations is entirely justified and warmly greeted. In addition, it complicates the analysis of the
program, protecting it from hackers.

Let's execute the program step by step.

Listing 183: A Step-by-Step Execution of the Tangled Code

mov eax, [var_A]
;eax ==var_A

XOr ecx, ecx
; ecx=0;

cmp eax, 0x666
; If eax<0x666 {SF=1; OF=0} else {SF=0; OF=0}

setge cl
; if eax<0x666 (i.e. SF==1, OF ==0) cl=0 else cl=1

dec ecx
; if eax<0x666 ecx=-1 else ecx=0

and ecx, OxFFFFFCO00
; if eax<0x666 (i.e., ecx==-1) ecx=0xFFFFFCO0O0 (-0x400) else ecx=0;

add ecx, 0x300
; if eax<0x666 (i.e., ecx=-0x400) ecx=0x100 else ecx=0x300;
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mov eax, [ebp+var_a]
; The value of the var_a variable is loaded into EAX.

mov  [ebp+var_tmp], eax

; Notice that switch creates its own temporary variable.

; Even if the value of the variable being compared is changed

; in some branch of case, the result of executing switch will not be
; affected! Hereinafter, to avoid confusion, we will refer to

; the var_tmp variable as the var_a variable.

cmp [ebp+var_tmp], 2

; The value of the var_a variable is compared to 2.

; Hm... In the source code, case began with 0, and ended with 0x666.
; What has this got to do with 2?

jg  shortloc_401026

; A jump is made ifvar_a > 2.

; Note that there was no such operation in the source code!

; This jump does not lead to calling the printf function

; (i.e., this code fragment is obtained not

; by directly translating some case branch, but in some other way.)

cmp [ebp+var_tmp], 2

; The value of var_a is compared to 2.

; Itis an obvious flaw of the compiler; we performed

; this operation just a moment ago and have not changed any
; flags since then.

jz shortloc_40104F

; A jump is made to the call of printf("a == 2") ifvar_a == 2.
; This code is obtained by translating the branch

; case 2: printf("a == 2").

cmp [ebp+var_tmp], O
; The value of var_a is compared to 0.

jz shortloc_401031

; A jump is made to the call of printf("a == 0") ifvar_a == 0.
; This code is obtained by translating the branch

; case O: printf("a==0").

cmp [ebp+var_tmp], 1
; The value of var_a is compared to 1.

jz shortloc_401040

; A jump is made to the call of printf("a == 1") ifvar_a == 1.
; This code is obtained by translating the branch

; case 1: printf("fa==1").

jmp  short loc_40106D

; A jump is made to the call of printf("Default").

; This code is obtained by translating the branch
; default: printf("a == 0").

loc_401026: ; CODE XREF: main+10t1 j
; This branch gains control if var_a > 2.
cmp [ebp+var_tmp], 666h
; The value of var_a is compared to the value 0x666.

jz  shortloc_40105E






in which they were declared. Why does the compiler behave in such a way?
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Figure 30: Translating the switch statement using Microsoft Visual C++

The purpose of the (a > 2) nest can be easily explained: Consecutive processing of all cases of the switch statement is
extremely unproductive. Such processing is fine if there are only four or five cases, but what if the programmer stuffs
the switch statement with a hundred or so of them? The processor will become exhausted from testing each of them.
(Especially since the sought case "likes" to appear at the end). Therefore, the compiler "compresses" the tree to reduce
its height. Instead of one branch (in Eig. 3qQ) in the given case, the compiler has constructed two of them. It placed the
numbers that are less than two into the left branch, and the rest of the numbers into the right branch. As a result, the
branch 666h appeared to be relocated from the end of the tree to its beginning. This method of optimizing the search
for values is called a fork algorithm.

The compiler has the right to change the order in which it processes the cases: The standard does not say anything
about it, and each implementation is free to act as it considers appropriate. The case routines (i.e., the code to which
case passes control if the condition is true) are another matter. They must be ordered just as they were declared in the
program because, in the absence of the terminating break statement, they should be executed strictly in the order
suggested by the programmer. However, this opportunity of the C language is rarely used.

Thus, we can identify the switch statement by applying this statement: After removing the central nest and grafting the
right branch to the left one (or vice versa), if we obtain an equivalent tree that forms a structure like a braid, we are
dealing with a switch statement or its analogue.

Do we have the right to delete nests, and would this operation impair the tree's structure? Note that the left branch of
the node's nest contains the (a == 2), (a == 0), and (a == 1) nests; the right one contains (a == 0x666). Obviously, if a ==
0x666, then a!=0and a! = 1. Hence, it is safe to_graft the right branch to the left one. After such a transformation, the
tree becomes typical for the switch construction ).
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Figure 31: Pruning the logical tree

However, such simple identification tricks do not always work. Particular compilers may create such a mess that your
hair will stand on end. Compiling this example in Borland C++ 5.0 results in the following:

Listing 189: The Disassembled Code of the switch Statement Compiled by Borland C++

; int __cdecl main(int argc, const char **argv, const char *envp)
_main proc near ; DATA XREF: DATA:00407044! o
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push ebp

mov ebp, esp

; The stack frame is opened.

; The compiler places the variable into the EAX register.
; Since it was not initialized, making note of it is not easy!

sub eax, 1
; Now, EAX is decremented by 1. What might it mean?
; There was no subtraction in the program.

jb short loc_401092

; If EAX < 1, a jump is made to the call of printf("a == 0").

; As already mentioned, CMP is the SUB instruction, except
; it does not change the operands.

; Therefore, this code is generated as a result of translating

; the branch case 0: printf("a == 0").

; Think! What values can EAX take to satisfy

; the condition of this relation? At first glance,

; EAX < 1 (in particular, 0, -1, -2, ...) STOP!

; You know that JB is an unsigned instruction of comparison,
; and -0x1 appears as OXFFFFFFFF in an unsigned form.

; OXFFFFFFFF is much greater than 1;

; therefore, the only suitable value is 0.

; Thus, this construction is simply a veiled test of EAX

; for equality to zero.

jz shortloc_40109F

; A jump is made if the zero flag is set.

; It will be set if EAX == 1.

; Indeed, the jump is performed to printf("a == 1").
dec eax

; EAX is decremented by 1.

jz shortloc_4010AC

; A jump is made if the zero flag is set. The flag is set if,

; after 1 is subtracted by the SUB instruction, 1 is left in EAX.

; In other words, the original value of EAX should have been 2.
; Control is passed to the branch that calls printf("a == 2").

sub eax, 664h
; The value 0x664 is subtracted from EAX.

jz shortloc_4010B9

; A jump is made if the zero flag is set.

; After decrementing EAX twice, it becomes equal to 0x664,
; hence the original value is 0x666.

jmp short loc_4010C6
; A jump is made to the call of printf("Default").
; Hence, this is the end of the switch statement.

loc_401092: ; CODE XREF: _main+61j
; printf("a==0");

push offset aA0 ; "a == 0"

call _printf

pop ecx

jmp short loc_4010D1

loc_40109F: ; CODE XREF: _main+81]j
; printf(“fa==1");
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Figure 32: Constructing a logical tree with nests that modify the variable being compared

There is another distinctive feature — case routines or, to be more precise, the break statements that traditionally
terminate them. They form the right half of the "braid" and converge to the point Z. However, many programmers
prefer case routines that have a size of two or three screens and that include loops, branches, and even nested switch
statements! As a result, the right part of the "braid" turns into an impassable jungle. The left part of the "braid" remains
recognizable.

The last compiler to be considered regarding this topic is Watcom C. As one would expect, we should watch for
specific subtleties and "delicacies" here. The compiled code of the previous example looks like the following:

Listing 190: The Disassembled Code of the switch Statement Compiled by Watcom C

main_ proc near ; CODE XREF: __CMain+40! p
push 8
cal __ CHK

; The stack is tested for overflow.

cmp eax, 1

; The value 1 is compared with the register variable
; containing the a variable.

jb  short loc_41002F

; If EAX == 0, a jump is made to the branch

; that contains additional tests.

jbe short loc_41003A
; If EAX == 1 (i.e., the condition EAX < 1 has been tested already),

; @ jJump is made to the branch that calls printf(*a == 1").

cmp  eax, 2
; EAX is compared to 2.

jbe short loc_410041
; If EAX == 2 (the condition EAX < 2 has been tested already),
; @ jJump is made to the branch that calls printf(*a == 2").

cmp eax, 666h
; EAX is compared to the value 0x666.


file:///C:/DOCUME~1/pferguso/LOCALS~1/Temp/A.LIST.Publishing.Hacker.Disassembling.Uncovered.eBook-LiB.chm/6555final/images/fig7%2D32%5F0%2Ejpg




Listing 191: Distinguishing the switch Statement from the case Statement

switch(a)
CASE a OF {
begin case 1 : printf("a ==1");
1 : WriteLn('a == 1Y; break;
case 2 :
2,47 : WriteLn('a == 2[4|7"); case 4:
case 7 : printf("a == 2|4|7");
break;
case 9 : printf("a == 9");
9 : WriteLn('a == 9"); break;

end;

Both languages impose a restriction on the variable being tested: It must belong to one of the integer types. In
addition, all sets (ranges) of values must be constants or constant expressions computed at compile time. Variables or
function calls should not be used.

It is interesting to see how Pascal translates the tests of ranges and how this differs in the C compilers. Let's consider
the following example:

Listing 192: Translating Tests of Ranges in Pascal

VAR
a : Longint;
BEGIN
CASE a OF
2 : WriteLn('a == 2");
4,6 : WriteLn('a == 4| 6");
10..100 : WriteLn(‘a == [10,100]");
END;
END.

Compiling this example in Free Pascal should give the following result. (To save space, only the left part of the "braid"
is shown.)

Listing 193: The Disassembled Code of the Range-Test Translation Using Free Pascal

mov eax, ds:;_A
; The value of the variable being compared is loaded into EAX.

cmp  eax, 2
; EAX is compared to the value 0x2.

jl loc_CA ; This is the end of CASE.
; If EAX < 2, ajump is made to the end of case.

sub eax, 2
; The value 0x2 is subtracted from EAX.

jz loc_9E ; WriteLn('a == 2";
; A jump is made to the call of WriteLn(‘a == 2") if EAX == 2.

sub eax, 2
; The value 0x2 is subtracted from EAX.

jz shortloc_72 ; WriteLn('a == 4|6");
; A jump is made to the call of WriteLn('a == 4|6") if EAX ==






nest will appear to contain as many as 10 other nests, but the right branch will appear to contain none (only a
corresponding case routine).
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Figure 33: A logical tree before (left) and after (right) compaction

The "skew" can be corrected by splitting one branch into two parts, and grafting the resultant halves into a new nest,
containing a condition that determines which branch should be sought for the variable being compared. The left
branch, for example, may contain nests with even values, while the right branch may hold the odd ones. However, this
is a bad criterion: The number of even and odd values is rarely split fifty-fifty, and the skew arises again. The following
method is much more reliable: Take the smallest value and throw it into the heap A, then take the greatest value and
throw it into the heap B. Repeat this procedure until all available values have been sorted.

A unique value is required for the switch statement (i.e., each number only may occur once in the set, or range, of
values). Therefore, it is easy to show that the heaps will contain equal quantities of numbers (in the worst case, one
heap may contain one more number). In addition, each number on the A heap will be less than the smallest number on
the B heap. Hence, we can make one comparison to determine in which heap we should look for the values being
compared.

The height of the new tree will be equal to (N + 1)/2 + 1, where N is the number of nests of the old tree. Really, the
branch of the tree is split into two parts, and a new nest added, creating N/2 and +1. Then, (N+1) is needed to round off
the division result to the upper value. For example, if the height of the nonoptimized tree reached 100 nests, it now
decreases to 51. You think 51 is a large number, too? What prevents us from again splitting each branch into two
parts? This will reduce the height of the tree to 27 nests. Subsequent compaction will give 16 - 12 - 11 - 9 - 8 —
this is all. Further compaction of the tree is impossible (think — or construct the tree — to figure out why). Still, 8 nests
are not as unmanageable as 100 nests. Passing through the entire optimized tree will require less than nine
comparisons.

Practically all compilers, even nonoptimizing ones, are capable of compacting logical trees of the switch statement!
Compaction boosts performance, but it complicates analysis of compiled programs. Look at Fig. 33 again: The left,
unbalanced tree is illustrative and intuitively clear; the right, balanced tree is difficult to understand.

Fortunately, the tree's balance admits an effective rollback. But before we begin climbing trees, let's introduce the
concept of a balancing node. A balancing node does not change the operation logic of a binary tree; it is an optional
node, whose only function is to truncate the branches. The balancing node of a tree may be replaced by any of the
branches without losing the functionality. Each branch of a balancing node should contain more than one nest.

If all nodes of a logic tree, the right branch of which contains one or more nests, can be replaced by this right branch
without losing of the tree's functionality, then the given construction represents a switch statement. Why just the right
branch? The switch statement, in its unwrapped condition, represents a chain of nests. These are interconnected by left
branches and contain case routines on the right branches. Therefore, we try to hook all the right nests on the left
branch. If we succeed, we are dealing with the switch statement; if not, we have encountered something different.

Consider the reconstruction of the balance in the following example , at the left). Starting from the lower-left
branch, we shall climb the tree until we encounter a node that has one or more nests on its right branch. In this case,
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this is the (a > 5) node. If we replace

his no
ig. 34

e with its nests — (a == 7) and (a == 9), the tree's functionality will not be

disturbed (as shown in the middle of ). Similarly, the (a > 10) node can be replaced by the (a > 96), (a == 96), (a
==22), and (a == 11) nests without any serious consequences. Then, the (a > 96) node can be replaced by the (a == 98),
(a==1666), and (a == 777) nests. A switch tree, in which the multiple-selection statement can easily be recognized, is
formed.
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Figure 34: Reversing the balance of the logical tree

A complex example of balancing (or optimizing the balance) To reduce the height of the tree being compacted, some
compilers replace existing nests with balancing nodes. Consider the following example: To reduce height of the tree,
the compiler splits it into two halves ). The left half is filled with nests that have values <= 1; the right half holds
all other nests. It would seem that the (a == 2) nest should hang on the right branch of the node (a > 1). However, this is
not the case. The (a > 2) node and the case routine :2 are hooked to the left branch. This is quite logical: if (a > 1) and !
(a>2),thena==2.

a==0 a=1
\; /a—-\y as>
E a==( ‘é:' a ==

Figure 35: An intricate example of balancing

The (a > 2) node is rigidly connected to and works with the (a > 1) node. It is impossible to throw out one of them without
impairing the functionality of the other. It also is impossible to use the algorithm described above to reconstruct the
balance of a tree without impairing the tree's functionality! It might seem that we are not dealing with the switch
statement, but with something different.

To dispel this delusion, several additional steps need to be taken. First, case routines are always on the right branch of
the switch tree. Is it possible to transform the tree so that the case routines appear on the left branch of the balancing

node? Yes, this can be done by replacing (a > 2) with (a < 3) and swapping the locations of the branches (in other
words, by performing an inversion). Second, all nests of the switch tree comprise equality conditions. Can the (a < 3)
inequality be replaced by a corresponding equality? It certainly can: (a == 2).

After these transformations, the tree's balance can be easily reversed.

Branches in case routines In reality, case routines teem with a variety of branches, loops, and conditional jumps. As a
consequence, the logical tree resembles a thistle thicket, not the switch statement. It should be clear that, after
identifying the case routines, this problem can be solved. But how can we identify the case routines?

Except for rare, unusual instances, case routines do not contain branches relative to the variable being compared.
Statements such as switch(a)... case 666 : if (a == 666) ... or switch (a)... case 666 : if (a > 666)... are pointless. Thus, we
may safely remove from the logical tree all the nests containing conditions that involve the variable being compared
(the variable of the root nest).

What if the programmer puts into case routines a branch relative to the variable being compared? This does not
complicate the analysis: The inserted branches are easily recognized as superfluous or as nonexecuting, and they
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simply can be pruned off. For example, if (a > 0) is hooked to the right branch of the (a == 3) nest, it can be removed; it
does not carry any information. If (a == 2) is hooked to the right branch of the same nest, it can be removed,; it never
executes, since if a==3, then a!=2.

Loops

Loops are the only constructions (except the offensive GOTO) in the high-level languages that have a backward
reference (i.e., to the area of lower addresses). All other kinds of branches — be it the IF-THEN-ELSE or switch
statement — are directed "downward" (i.e., to the area of higher addresses). Consequently, the logical tree
representing a loop is so typical that it can be identified at first glance.

There_are three basic types of loops: loops with a conditign at the peginning ), loops with a condition at the
end (Eig. 36, i), and loops with a condition in the middle ‘). Combined loops can have several conditions in
different places, such as at the beginning and at the end simultaneously.
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Figure 36: The logical tree of a loop with the condition at the beginning (a), at the end (b), and in the middle (c)

In turn, conditions can be of two types: conditions of the loop termination and conditions of the loop continuation. In the
first case — if the loop termination is true — a jump is made to the end of the loop; otherwise, the execution of the loop
is continued. In the second case — if the loop continuation condition is false — again, a jump is made to the end of
the loop; otherwise, the execution of the loop is continued. Conditions of the loop continuation represent the inverted
conditions of the loop termination. Thus, it is enough for the compiler to support the conditions of only one type. The
while, do, and for statements of the C language work only with conditions of the loop continuation. The Pascal while
statement also works with the condition of the loop continuation; the only exception is repeat-until, which expects the
loop termination condition.

Loops with conditions at the beginning (or loops with the precondition) In the C and Pascal languages, support for
loops with the precondition is provided by the statement while (expression), where expression is a loop continuation
condition. For example, the while (a < 10) a ++; loop will execute as long as the condition (a < 10) remains true.
However, the compiler may invert the loop continuation condition into thy ination condition. If the Intel 80x86
platform is used, such a trick saves one or two machine instructions. In .Listinz 19;, a loop with the termination
condition is at the left, and one with the continuation condition is at the right. The loop with the termination condition is
shorter by one instruction! Therefore, practically all compilers generate the left variant. However, some of them are
capable of transforming loops with the precondition into more efficient loops with the postcondition.

Listing 195: The Same Loop with a Termination and a Continuation Condition

while: while:
cmp a, 10 cmp a, 10
jae end jb continue
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Why do we the need all these tricks, which considerably inflate the code? The static branch-prediction unit of Pentium
processors is optimized for jumps directed backward (i.e., into the area of lower addresses). Therefore, loops with a
postcondition should execute a little faster than similar loops with a precondition.

Loops with a counter Loops with a counter (for) are not independent types; they only represent a syntactic version of
loops with a precondition. As a first approximation, for (a = 0; a < 10; a++) is the same as a = 0; while (a < 10) (...;a++;).
However, the results of compiling these statements may not be identical.

Optimizing compilers (as well as a significant part of nonoptimizing ones) pass control to the statement that tests the
condition of the loop termination after initializing the variable counter. The resulting statement is evident at once when
the program is analyzed. In addition, it cannot be translated directly into a while loop of a high-level language. Consider
this listing:

Listing 197: An Example of a Loop with a Counter

mov a, XXX
; The variable of the "counter" is initialized.

jmp conditional
; A jump is made to the testing of the loop continuation condition.

repeat:
; The beginning of the loop is reached.

; The loop's
; body follows.

add a, xxx [sub a, xxx]
; The counter is modified.

conditional:
cmp  a, Xxx
; The loop continuation condition is tested.

jxx repeat
; A jump is made to the loop's beginning if the condition is true.

The immediate jump downward may result from compiling the for loop or the GOTO statement. The latter is out of
fashion and is seldom used; however, without it, the IF-THEN conditional jump statement cannot jump directly into the
middle of the while loop. Of all "candidates"”, only the for loop remains.

Certain advanced compilers (such as Microsoft Visual C++ and Borland C++, but not Watcom C) try to determine at
compile time whether the given loop is executed at least once. If such an action occurs, they convert for into a typical
loop with the postcondition.

Listing 198: An Example of the Conversion of a Counter

mov a, XXX
; The variable of the "counter" is initialized.

repeat:
; This is the beginning of the loop.

; The loop's
; body follows.

add a, xxx [sub a, xxx]
; The counter is modified.

cmp a, XxXx






previously mentioned, is out of fashion. The condition of termination for an infinite loop may only be in the middle of this
loop (not considering complex cases of multithread protection, which modify an unconditional jump into NOP). All that
remains is to look up the loop's body and find this condition.

This is easy — the break statement is translated into the jump to the instruction next to JMP repeat, and break itself
gains control from the IF(condition)-THEN-[ELSE] branch. The condition of the statement also is required for the loop
termination.

Loops with multiple termination conditions The break statement allows the loop termination to be organized in any
place the programmer considers fit; therefore, many termination conditions may be scattered throughout the body of
any loop. This complicates the analysis of the program being disassembled; we risk "missing" one of the loop
termination conditions and, consequently, misunderstanding the program's logic.

Identifying the loop termination conditions is easy: They always are directed "downward" (i.e., to the area of the higher
addresses), and they point to the instruction next to the instruction of the conditional (unconditional) jump directed
"upward" (i.e., to the area of lower addresses).

Loops with several counters The support of comma-separated lists in the C language allows multiple initialization and
update counters of the for loop to be carried out, such asfor (a =0, b = 10; a != b; a++, b-). But what about several
termination conditions? The "old and new testaments" (the first and the second edition of K&R, respectively); the ANSI
C standard; and manuals applied to the Microsoft Visual C++, Borland C, and Watcom C compilers keep silent on this
point.

If you try to compile the code for (a =0, b = 10; a > 0, b<10; a++, b—), it will be "swallowed" by practically all compilers.
However, none of them will compile the given example correctly. The (a1, a2, a3, ..., an) logical expression is senseless,
and compilers will reject everything except the rightmost expression, an. This expression will exclusively define the loop
continuation condition. Only Watcom grumbles in this instance: "Warning! W111: Meaningless use of an expression: the
line contains an expression that does nothing useful. In the example 'i = (1,5);', the expression '1', is meaningless. This
message is also generated for a comparison that is useless."

If the loop continuation condition depends on several variables, their comparisons should be combined into one
expression using the logical operations OR, AND, etc. For example, using for (a =0, b = 10; (a>0 && b < 10); a++, b-), the
loop will be terminated as soon as one of two conditions becomes false; using for (a=0, b =10; (a>0]| b < 10); a++,
b—), the loop will be continued while at least one of the conditions is true.

Loops with several counters are translated similarly to loops with one counter, except that several variables, not one,
are initialized and modified simultaneously.

Identifying the continue statement The continue statement causes control to pass immediately to the code that tests the
loop continuation (termination) conditions. Generally, in loops with a precondition, this is translated into an
unconditional jump directed upward, and in loops with a postcondition, into one directed downward. The code that
follows continue does not gain control; therefore, continue is practically always used in conditional statements.

For example, while (a++ < 10) if (a == 2) continue; ... is compiled into code like this one:

Listing 201: The Result of Compilating Code with a continue Statement

repeat:
; This is the beginning of while.

inca ;at++
cmp  a, 10

; The loop termination condition is tested.

jae end
; End if a >= 10.

cmp a,2
If(@a==2),...

jnz  woo
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In general, translating this example results in:

ey e o+
contimuation conditionl —l
continuetion comditiconZ

This is the same, isn't it?
do

{
do

{

}while(conditionl)
}while(condition2)

The offered case is logically correct, but syntactically ugly. The parent loop runs only one enclosed loop in its body and
does not contain any other statements. So why is it necessary? Let's combine it with the enclosed loop!

Disassembler listings of examples To illustrate the previous discussions, let's consider several examples.
Let's begin with the simplest one: the while\do loops.

Listing 202: Identifying while\do Loops

#include <stdio.h>

main()
{
int a=0;
while(a++<10) printf("The while loop\n");

do{
printf("The do loop\n™);
} while(--a >0);

Compiling this example in Microsoft Visual C++ 6.0, with the default settings, should give the following:

Listing 203: The Disassembled Code of Identifying a while\do Loop Using Visual C++ 6.0

main proc near ; CODE XREF: start+AF ! p
var_a = dword ptr -4
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
; Memory is allocated for one local variable.

mov [ebp+var_a], 0
; The value 0x0 is assigned to the var_a variable.

loc_40100B: ; CODE XREF: main_401000+291 j
; The cross-reference directed downward indicates

; that this is the beginning of the loop.

; Naturally, if the cross-reference is directed downward,

; the jump that refers this address will be directed upward.



mov eax, [ebp+var_a]
; The value of the var_a variable is loaded into EAX.

mov  ecx, [ebp+var_a]
; The value of the var_a variable is loaded into ECX.
; (This might be achieved in a shorter way: MOV ECX, EAX).

add ecx, 1
; ECXis incremented by 1.

mov [ebp+var_a], ecx
; The var_a variable is updated.

cmp eax, 0Ah
; The value of the var_a variable
; before it was updated is compared to the value OxA.

jge short loc_40102B

; If var_a >= OxA, a "forward" jump is made, just behind the instruction
; of the unconditional jump that is directed "backward.”

; Therefore, this is a loop. Since the loop termination condition

; is tested in the loop's beginning, this is a loop with

; a precondition. To represent it as the while loop,

; we need to replace the loop termination condition with

; the continuation condition (i.e., to replace >= with <).

; Having done this, we obtain:

; while (var_a++ < 0xA)

; Here is the beginning of the loop's body.

push offset aOperatorOfWloop ; "The operator of the while loop\n*
call _printf

add esp, 4

; printf("The while loop\n™)

jmp short loc_40100B

; An unconditional jump is directed backward to the loc_40100B label.

; There is only one loop termination condition - jge short loc_40102B -

; between loc_40100B and jmp short loc_40100B. Therefore, the original
; loop was: while (var_a++ < 0xA) printf("The while loop\n")

loc_40102B: ; CODE XREF: main_401000+1Al j
; main_401000+45_j
; This is the beginning of the loop with a postcondition.
; However, we cannot be sure of this yet.
; We may only guess this based on the presence of the
; cross-reference directed downward.

; There is no condition in the loop's beginning; therefore,

; this is a loop with a condition at the end or in the middle.

push offset aOperatorOfLoopD ; "The operator of the do loop\n"
call _printf

add esp, 4

; printf("The do loop\n™)

; The loop's body follows.

mov edx, [ebp+var_a]
; The value of the var_a variable is loaded into EDX.

sub edx, 1
; EDXis decremented by 1.






; A jump is made to the loop's beginning while EDI != 0.

; In a burst of optimization, the compiler transformed an inefficient
; loop with a precondition into a more compact and faster loop with
; a postcondition. Does the compiler have the right to do this?

; Why not?! After analyzing the code, the compiler has understood that
; this loop is executing at least once. Therefore, after the continuation
; condition has been corrected, it can be moved to the end of the loop.
; That is why the initial value of the loop's variable is 1, not 0.

; The compiler has replaced while ((int a = 0) < 10) with:

; do ... while (((inta = 0)+1) < 10) ==

; do ... while ((int a=1) < 10)

; Interestingly, the compiler did not compare the loop's variable

; to a constant. Instead, it placed the constant into the register,

; and decremented it until it became zero. Why? To make the loop
; shorter and work faster! This is fine, but how can the loop

; be decompiled?

; A direct representation in the C language gives the following:
;var_ESI =1; var_EDI = OxA,

;do {

; printf("The while loop\n"); var_EDI--; var_ESI++;

; } while(var_EDI > 0)

; This is clumsy and intricate, isn't it? Let's try to remove

; one of two variables. This is possible, since the varaibles are

; modified simultaneously, and var_EDI = OxB - var_ESI.

; Let's use the substitution:

;var_ESI =1; var_EDI = 0xB - var_ESI ; (== 0xA;)

;do {

; printf("The while loop\n"); var_EDI--; var_ESI++;

; Let's cancel var_EDI, since it is already represented

; through var_ESI.

; } while((OxB - var_ESI) > 0); (== var_ESI > 0xB)

; We likely will obtain something sensible, such as:

;var_ESI = 1; var_EDI == OxA,

;do {

;. printf("The while loop\n"); var_ESI++;

; } while(var_ESI > 0xB)

; We may stop here or go further, having transformed the loop

; with a postcondition into a more illustrative loop with a

; precondition, that is, var_ESI = 1; var_EDI == OxA;

; Now, var_EDI is not used and can be canceled.

; while (var_ESI <= 0xA) {

; printf("The while loop\n") ; var_ESI++;

i}

; This is not the limit of expressiveness, since

; var_ESI <= 0xA is equivalent to var_EDI < 0xB. In addition,

; since the var_ESiI variable is used only as a counter,

; its initial value can be set to zero,

; and the increment statement can be brought into the loop:
;var_ESI=0;

; while (var_ESI++ < 0xA); subtracting 1 from the left and right half
; printf("The while loop\n®);

; This is wonderful, isn't it? Compare this variant with

; the previous one and see how much simpler and clearer it has become.









Listing 206: The Disassembled Code of a Loop with a Precondition Generated by the GCC Compiler

mov [ebp+var_a], 0
; The value 0 is assigned to the a variable.

mov  esi, esi

loc_401250: ; CODE XREF: sub_40123C+34!j
; The loop's beginning is reached.

mov eax, [ebp+var_a]

; The value of the var_a variable is loaded into EAX.
inc [ebp+var_a]

; The var_a variable is incremented by 1.

cmp  eax, 9
; EAX is compared to the value 0x9.

jle  short loc_401260
; A jump is made if EAX <= 0x9 (EAX < 0xA).

jmp  short loc_401272

; An unconditional jump is made to the loop's end.

; Hence, the previous conditional jump is a jump to the loop's
; continuation. What a nonoptimal code this is! Nevertheless,
; there is no inversion of the loop continuation condition,

; which simplifies disassembling.

align 4

; Aligning the jump on addresses that are multiples of four
; makes code faster, but it increases the size significantly
; (especially if there are many jumps).

loc_401260: ; CODE XREF: sub_40123C+1D1
add esp, OFFFFFFF4h
; Now, 12 (0xC) is subtracted from ESP.

push offset aOperatorOfWLoop ; "The operator of the while loop\n"
call printf

add esp, 10h

; The stack (0xC + 0x4) == 0x10 is restored.

jmp  short loc_401250
; A jump is made to the beginning of the loop.

loc_401272:
; The end of the loop is reached.

Now that we have cleared up while\do, let's look at the for loops in the following example.

Listing 207: Identifying for Loops

#include <stdio.h>

main()
{
int a;
for (a = 0; a < 10; a ++) printf("The for loop\n");




Compiling this example in Microsoft Visual C++ 6.0, with the default settings, should give the following result:

Listing 208: The Disassembled Code of a for Loop Compiled by Visual C++ 6.0

main proc near ; CODE XREF: start+AF! p
var_a = dword ptr -4
push ebp

mov  ebp, esp
; The stack frame is opened.

push ecx
; Memory is allocated for the local variable.

mov [ebp+var_a], 0
; The value 0 is assigned to the var_a local variable.

jmp short loc_401016
; An immediate jump is made to the code that tests the loop
; continuation condition, an indication that this is a for loop.

loc_40100D: ; CODE XREF: main+291 j
; The cross-reference directed downward indicates that
; this is the beginning of the loop.

mov eax, [ebp+var_a]
; The var_a variable is loaded into EAX.
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cmp [ebp+var_a], 0Ah
; The var_a variable is compared to the value OxA.

jle  short loc_401032

; Ajump is made if var_a <= OxA.

; But to where does it jump? First, the jump is directed downward
; (i.e., this is not a jump to the loop's beginning).

; Therefore, the condition is not a loop condition;

; it's the result of compiling the IF-THEN statement.

; Second, it is a jump to the first instruction that follows the

; unconditional jump loc_401041. This, in turn, passes control to

; the instruction that follows jmp short loc_401075 - an unconditional
; jump directed upward to the loop's beginning.

; Hence, jmp short loc_401041 terminates the loop, and

; jle short loc_401032 continues executing it.

jmp short loc_401041

; This is a jump to the loop termination. What terminates the loop?
; Certainly, break does!

; Therefore, the final decompilation should look as this:

; if (++var_a > 0xA) break

; We have inverted <= into >,

; since JLE passes control to the loop continuation code,

; and the THEN branch passes control to break, in this case.

loc_401032: ; CODE XREF: main+2E1j
; The cross-reference is directed upward,;
; this is not the loop's beginning.

push offset a2iOperator ; "2nd statement\n”
call _printf

add esp, 4

; printf("2nd statement\n®)

jmp  short loc_40100B

; A jump is made to the loop's beginning.

; Therefore, we have reached the loop's end,
; restoring the source code:

; while(1)

i

; printf("1st statement\n");

; if (++var_a > OxA) break;

7 printf("2nd statement\n®);

i}

loc_401041: ; CODE XREF: main+121 j main+30!j ...
; The cross-reference directed downward indicates that
; this is the loop's beginning.

push offset aliOperator_0 ; "1st statement\n"
call _printf

add esp, 4

; printf("1st statement\n®)

mov edx, [ebp+var_a]

; The value of the var_a variable is loaded into EDX.
sub edx, 1

; EDX is decremented by 1.

mov [ebp+var_a], edx
; The var_a variable is updated.






; postcondition (or with a condition in the middle).

inc esi
; ++var_ESI

cmp esi, 0Ah
; The var_ESI variable is compared to the value OxA.

jg  shortloc_401025

; The loop is terminated if var_ESI > 0xA.

; Since this instruction is not the last one in the loop's body,
; this loop has a condition in the middle:

; if (var_ESI > OxA) break

push offset a2iOperator ; "2nd statement\n”
call _printf

add esp, 4

; printf("2nd statement\n®)

jmp  short loc_401003

; An unconditional jump is made to the loop's beginning.
; Obviously, the optimizing compiler has eliminated

; the unnecessary test of the condition,

; making the code simpler and more comprehensible.
; Therefore:

;var_ESI=0

s for (33)

A

; printf("1st statement\n");

; ++var_ESI;

; if (var_ESI > OxA) break;

; printf("2nd statement\n®);

i}

; The degenerated for is an infinite loop.

loc_401025: ; CODE XREF: main+141 j
; This is not the loop's beginning.

push offset aliOperator_0 ; "1st statement\n"
call _printf

add esp, 4

; printf("1st statement\n”)

; Is this the loop's beginning? It is likely.

dec esi
; The var_ESI variable is decremented.

js  shortloc_401050

; The loop is terminated if var_ESI < 0.

inc esi

; The var_ESI variable is incremented by 1.

loc_401036: ; CODE XREF: main+4E1 ]
; Here is the loop's beginning!

push offset a2iOperator_0O ; "2nd statement\n”

call _printf

; printf("2nd statement\n")

; Oddly enough, the loop's beginning is in its center.



push offset aliOperator_0 ; "1st statement\n"

call _printf

add esp, 8

; printf("1st statement\n”)

; Strange things are going on. We already encountered
; the call of the first statement of the loop above,

; and it is improbable that the middle of the loop

; would be followed by its beginning.

dec esi
; The var_ESiI variable is decremented.

jnz short loc_401036
; The execution of the loop is continued while var_ESI != 0.

loc_401050: ; CODE XREF: main+331j
; The end of the loop is reached.
; Well, there is much to think over. The compiler processed
; crossed over the first line of the loop normally:
; printf("1st statement\n”)
; then "ran into" the branch:
; if (--a<0) break
; Microsofties know that branches are as unappealing
; to high-pipelined processors (such as the Pentium chips) as
; thistles are to Tigger. In addition, the C compilers for the
; CONVEX family of processors refuse to compile the loops with branches.
; Thus, the compiler has to correct programmer's mistakes.
; In general, it is not obliged to do this. We should be thankful!
; Itis as though the compiler is "circling” the loop
; and "dazzling" the calls of the printf functions,
; bringing out branches to the end.
; Think of the execution of the code as a racetrack and the
; processor as a racer. The longer the straightaway,
; the quicker the racer will speed down the racetrack!
; The compiler can move the condition from the middle
; of the loop to its end - branching is performed relative to
; a variable modified neither by printf, nor by any other function.
; So, does it make any difference where it is tested?
; It certainly does. When the (--a < 10) condition
; becomes true, only the execution of the first printf is
; completed, and the second printf has no chance to gain control.
; That is why the compiler placed the code for testing
; the condition immediately after the first call of the printf function,
; and then it changed the order of calling printf in the loop's body.
; Because the first printf occurs twice, it executed one time more
; than the second printf did when the loop terminated.
; One point is left to clear up: What does incrementing var_ESI mean?
; Let's think about what would happen if we threw out the instruction
; inc ESI. Since the loop's counter is decremented twice
; during the first iteration, the loop will be executed one
; fewer times. To keep this from happening,
; var_ESl is incremented by 1, using the inc ESI instruction.
; Solving this puzzle was a tough task.
; Think about the ease of implementing a compiler
; that knows how to carry out such tricks.
; Surprisingly, some people criticize automatic optimization.
; Certainly, manual optimization may give a better result
; (especially when you understand the sense of the code), but it could
; easily drive you insane! The compiler, even when constrained by






add ecx, 1
; The value 1 is added to ECX.

mov  [ebp+var_a], ecx
; The var_a variable is updated.

cmp eax, 0Ah
; The value of the var_a variable, before it is increased,
; Is compared to the value OxA.

jge short loc_401037

; The loop is terminated if var_a >= OxA.

; (A jump is made to the instruction

; next to the one directed upward - to the loop's beginning.)

cmp [ebp+var_a], 2
; The var_a variable is compared to the value 0x2.

jnz short loc_401024

; If var_a != 2, then jump to the instruction that is next to

; the instruction of the unconditional jump directed upward -

; to the loop's beginning. It is likely that this is the condition

; of the loop termination.

; However, it is unwise to draw hasty conclusions.

; We encountered two cross-references at the loop's beginning.

; The jmp short loc_40100B unconditional jump forms one of them.
; What is "responsible” for the other one?

; To answer this question, the rest of code must be analyzed.
jmp short loc_40100B

; An unconditional jump is directed to the loop's beginning.

; This is either the loop's end, or continue.

; If this is the loop's end, what is “jge short loc_401037"?

; Is it a precondition for terminating the loop? No, this is unlikely.
; If it were a precondition for terminating the loop, the jump

; would be made to the loc_401024 label - a much "shorter" one.
; Maybe jge short loc_401037 is a precondition of one loop,

; and jnz short loc_401024 is a postcondition of another one

; nested within it. This is possible, but improbable - in such a case,
; a postcondition would be a loop continuation condition,

; not a termination condition. Therefore, it seems most likely that
; the code CMP var_a, 2\ JNZ loc_401024 \ JMP loc_40100B

; is if (a==2) continue.

loc_401024: ; CODE XREF: main+201 j
mov edx, [ebp+var_a]
push edx
push offset asc_406030 ; "%x\n"
call _printf
add esp, 8
; printf("%x\n", var_a)

jmp  short loc_40100B

; This is the loop's end; the last reference

; to the loop's beginning is jmp short loc_40100B.

; Let's summarize what we have:

; The condition located at the loop's beginning executes the loop
; while var_a < 0xA, with the loop's parameter incremented

; before the comparison is made. One more condition follows,

; which returns control to the loop's beginning if var_a == 2.
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; A jump is made to the code that tests the loop continuation condition.
; Undoubtedly, this is continue,

; and the entire construction looks as this:

; if (@==2) continue;

loc_40103F: ; CODE XREF: main+3B1j
mov  eax, [ebp+var_a]
push eax
push offset asc_406034 ; "%x\n"
call _printf
add esp, 8
; printf("%x\n", var_a);

loc_401050: ; CODE XREF: main+3D1]j
mov  ecx, [ebp+var_a]
sub ecx, 1
mov [ebp+var_a], ecx
;--var_a;

cmp [ebp+var_a], O
; The var_a variable is compared to zero.

jg short loc_401037
; The loop execution is continued while var_a > 0.
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; The value 0x1 is assigned to the var_a variable.

mov  [ebp+var_b], 0Ah
; The value OxA is assigned to the var_b variable.

jmp  short loc_401028

; A jump is made to the code that tests

; the conditions for quitting the loop.

; This is a typical feature of nonoptimized for loops.

loc_401016: ; CODE XREF: main+431 j
; The cross-reference directed downward indicates that
; this is the beginning of the loop.
; We already figured out that the loop's type is for.

mov eax, [ebp+var_a]
add eax, 1

mov [ebp+var_a], eax
;var_a++

mov  ecx, [ebp+var_b]
sub ecx, 1

mov [ebp+var_b], ecx
; var_b--

loc_401028: ; CODE XREF: main+14$j
cmp [ebp+tvar_b], 1
jle  shortloc_401045
; The loop is terminated if var_b <= Ox1.
; Only one counter (the second one from the left) is
; checked. The compiler regards the (a1, a2, a3,...,an) expression
; as senseless and uses only an, ignoring the rest of it.
; (Of all the compilers that | know,
; only Watcom complains in such a case.)
; In this compilation, only the (b > 1) condition is tested;
; the (a < 10) condition is ignored.

mov edx, [ebp+var_b]

push edx

mov eax, [ebp+var_a]

push eax

push offset axX ; "%X %x\n"
call _printf

add esp, OCh

; printf("%x %x\n", var_a, var_b)

jmp  short loc_401016

; This is the end of the loop.

; Thus, this loop can be represented as:

; while(1)

i

;var_a++;

; var_b--;

; if (var_b <= 0x1) break;

; printf("%x %x\n", var_a, var_b)

'}

; For better readability, it makes sense to represent this code
; as the for loop:

; for (var_a=1, var_b=0xA,; var_b>1; var_a++, var_b--)
; printf("%x %x\n", var_a, var_b);






























must equal the sign bit to preserve the number's sign. However, if the first N bits are zeroes, all the bits of the result
should be cleared, regardless of the value of the sign bit.

Thus, if the dividend is an unsigned number, the a%zN expression is translated into AND a, (b-1); otherwise, the
translation becomes ambiguous: The compiler may insert an explicit test for zero into a branch statement, or it may
use cunning mathematical algorithms, the most popular of which is DEC x\ OR x, -N\ INC x. The point is that if the first N
bits of the number x are zeros, all the bits of the result, except for the most significant — the sign bit — will equal 1. In
addition, OR x, -N will force the most significant bit to be set to zero as well (i.e., the resulting value will be —-1). As for
INC-1, it will give zero. On the contrary, if at least one of N low-order bits is 1, there is no carry from the high-order bits,
and INC x restores the initial value of the result.

Using complex transformations, advanced optimizing compilers may replace division with one of several faster
operations. Unfortunately, there are no algorithms for the fast calculation of the remainder for all dividers, and the

divider should be a multiple of k x Zt, where k and t are integers. Then the remainder can be calculated using the
formula

a%b=a%kx3'=a-2"N K+ @2 -2 xk

This formula is complex, and identifying the optimized % operator may appear to be a tough task, especially with
optimizers' tendency to change the order of instructions.

Consider the following example:

Listing 229: Identifying the % Operator

main()
{
int a;
printf("%x %x\n", a%16, a%10);

Compiling this example in Microsoft Visual C++ with default settings should give the following:

Listing 230: The Disassembled Code with the % Operator

main proc near ; CODE XREF: start+AF! p
var_4 = dword ptr -4
push ebp

mov ebp, esp
; The stack frame is opened.

push ecx
; Memory is allocated for a local variable.

mov eax, [ebp+var_a]
; The value of the var_a variable is placed into EAX.

cdqg
; EAX is extended to the quadword EDX:EAX.

mov  ecx, 0Ah
; The OxA value is placed into ECX.

idiv ecx
; EDX:EAX (var_a) is divided by ECX (OxA).

push edx
; The remainder from division of var_a by OxA is passed to the
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Introduction

The three basic stages of cracking protection mechanisms are locating the protection code in hundreds of kilobytes
(or megabytes) of application code, analyzing the algorithm of its work, and breaking. These stages are equally
important: For example, if the second stage is not passed, it makes no sense to start cracking.

It is possible to classify protection typographically. Cryptographic protection, for example, is used at the third stage. As
a rule, its algorithm is widely available, well documented, and known to the hacker. Nevertheless, this does not aid
cracking greatly (unless it simplifies the writing of a program for a brute-force attack). Protection based on registration
numbers, however, stresses imposing secrecy on the algorithm that generates the registration numbers and
hampering the search for and analysis of the algorithm in the program code. (Once the algorithm is known, it is easy to
write the key generator.)

However, even protection that employs cryptographic methods, such as by ciphering the bodies of crucial functions
using a strong cipher and a long key, may be separated from the key (for example, by saving a dump of the program
after deciphering). Distributing the program with an applied key is a simpler tactic commonly used by pirates. One way
of thwarting such an unlawful action is to include the encoded specification data of the computer into the key, or to
check the authenticity of the copy through the Internet. (It is even possible, although considered bad form, to do this
without notifying the user.) But what prevents a hacker who owns a licensed copy of the program from deciphering it
with his or her own key and removing any checks from the program?

Therefore, any protection should be able to effectively counteract attempts at detection and analysis, and poison the
disassembler and the debugger — the main tools of the cracker — along the way. Without this, protection is no
protection at all.

During the reign of MS-DOS, the computer world was governed by real-time programs that used the processor,
memory, and other hardware exclusively, and that switched to protected mode or back at any moment. At that time,
debuggers (still shaky, feeble, and impractical) could easily be deceived (frozen, or forced to abort execution) by
simple programming tricks actively used by protection mechanisms. Disassemblers fell into a stupor upon merely
seeing ciphered or selfmodifying code. It was paradise for protection-mechanism developers.

Now, everything has changed. Windows applications are not allowed to show off. Pressing ahead with the protected
mode is no longer possible — only prosaic, nonprivileged instructions can be used, and tricks of different kinds can be
only dreamed of. A few protective measures that can function even in such a "user friendly" environment fails against
wise debuggers and disassemblers.

The hardware support for debugging in 386+ processors, along with v86 mode, privileged instructions, and virtual
memory, allow the creation of debuggers that are almost undetectable by the application program. Moreover, it is
impossible for the application to gain control over such debuggers. There are also debugger-emulators, true-to-life
virtual machines executing code independently, instead of running it on a "live" processor. The emulator always runs
in supervisor mode, even in relation to the zero-ring code being debugged. Protection mechanisms have little chance
of detecting the debugger or hindering it (only possible if the emulator is implemented with mistakes).

Interactive disassemblers (like IDA) also have appeared. Their close relationship with the user (i.e., the hacker), allows
them to bypass traps left by the developer.

The application sets up its own vxd. (This is executed in the zero-level protection ring and can do whatever it wants.)
However, this only facilitates the hacker's task: The interaction of protection mechanisms and vxd is only possible
through a special API, which simplifies the study of the protection algorithm and the emulation of vxd for unbinding the
application from the electronic key or key diskette.

Even hiding something in the zero-ring protection is a problem in Windows. To guarantee compatibility with all
Windows-like operating systems, only the system's documented capabilities can be used. Building protection in
Windows is like trying to get lost in a park with a million trees, all of which are laid out geometrically and hung
abundantly with signs reading "Exit this way."



Thus, it is very difficult, if not impossible, to reliably thwart the study of a program. However, many techniques for
counteracting debuggers and disassemblers are interesting in themselves.
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Counteracting Debuggers

A Brief History

The first debugger, debug.com, bore slight resemblance to today's debuggers. Moreover, it came as part of a regular
MS-DOS package. Today, it is probably only suitable for entertainment and for studying assembler. Few people were
delighted with it when it first appeared, and new debuggers mushroomed. However, most did not make significant
advances as compared with the prototype. For example, some differed from the original only in the interface.

It was the golden age for protection developers. To make it impossible to debug a program, it was enough to lock the
keyboard, disable interrupts, and clear the trap flag.

The first debuggers even slightly suitable for cracking appeared only after computers equipped with the 80286
processor. Hackers may remember AFD PRO, presented in 1987 by AdTec GmbH; the well-known Turbo Debugger,
created by two brothers, Chris and Rich Williams, a year later; and the first emulating debugger by Sergey Pachkovski,
written much later, in 1991. Protection developers withstood the assault: Debuggers still allowed the program being
debugged to gain control over them, and they hardly withstood operations on the stack, the screen, the keyboard, and
So on.

The situation changed when 80386 processors appeared. Major complications in the software (and, consequently,
enormous complications in debugging) demanded the presence of advanced means of debugging in the processor
itself. As a result, these appeared in 386. From that moment, protection developers began to feel uneasy.

Fuel was added to the fire by NuMega, which presented its remarkable Softlce at the end of the 1980s. Softlce gained
huge popularity among hackers and, adapted for Windows 9x/NT/2000, remains an undisputed favorite (although not
without competitors). However, it would be incorrect to consider NuMega a criminal company and Softlce a product
only used by hackers: The debugger was intended primarily for driver-developers and for legal investigations of the
operating system. (Writing drivers is a tough task unless the intricacies of the OS are understood.)

Nevertheless, Softlce gave protection programs and their developers a lot of trouble. Certainly, it was not (and is still
not) a stealth debugger, completely invisible to the program being debugged, and it had (and still has) several bugs
that allow the protection to detect it, freeze it, and/or to escape from its control. Nevertheless, in skilful hands, it coped
successfully with all these limitations and bypassed carefully set "traps.” Each new version of Softlce became more
difficult to counteract. (Old bugs were fixed faster than new ones were introduced.)

Anti-debugging tricks gradually came to nothing; they have disappeared as a result of the victorious advance of
Windows. The ridiculous belief that it is impossible to stop someone working in Windows with a debugger at the
application level has become common. This brings smiles to the faces of professionals who build different traps into
their programs (more for fun than to combat hackers seriously).

In view of the current possibilities for analyzing applications, struggling against hackers is a useless occupation.
However, another serious threat comes from yesterday's beginners, who have read a lot of different
"how-to-crack-programs" FAQs. (Thank goodness they are accessible to everyone.) These beginners now are looking
for something on which to test their powerful capabilities.




How the Debugger Works

Struggling against a debugger without knowing how it works would, at best, be an indication of ill manners; therefore,
the basic principles underlying it must be considered. The description that follows is not exhaustive. Nevertheless, it
will give the reader a general idea about the issue. Full technical details can be found in the "Debugging and
Performance Monitoring" chapter of the technical manual "IA-32 Intel Architecture Software Developer's Manual.
Volume 3: System Programming Guide", distributed free of charge by Intel.

All existing debuggers can be divided into two categories: ones that use the processor's debugging capabilities, and
ones that emulate the processor independently, monitoring the execution of the program being tested.

A high-quality emulating debugger cannot be detected or bypassed the code being debugged. However, there are no
high-quality emulators of Pentium processors, and they are unlikely to appear in the foreseeable future.

In general, it is worth asking if it makes sense to create such emulators. Pentium microprocessors provide immense
debugging opportunities, allowing the developer to monitor even privileged code. They support step-by-step execution
of the program, control execution of an instruction at a given address, monitor references to a given memory location
(or to input-output ports), signal task switching, and so on.

If the trap bit of the flags register is set, the INT 1 debug exception is generated automatically after each machine
instruction is executed, and control is transferred to the debugger. The code being debugged may detect tracing by
analyzing the flags register. Therefore, to stay invisible, the debugger should recognize the instructions for reading the
flags register, emulate their execution, and return zero for the value of the trap flag.

One point must be noted: After executing the instruction that modifies the value of the SS register, the debug exception
is not generated. The debugger should be able to recognize this situation, and independently set a breakpoint on the
following instruction. Otherwise, the automatic tracer will not be able to enter the procedure preceded by the POP SS
instruction (for example, PUSH SS; POP SS; CALL MySecretProc). Not all contemporary debuggers take this subtlety
into account. Such a decision, despite its archaic nature, may appear helpful.

Four debug registers, DRO through DR3, store the linear addresses of four checkpoints. The DR7 debug register
contains a condition for each of the points. When any condition is true, the processor generates the INT 0x1 exception
and control is transferred to the debugger. There are four conditions: an instruction is executed; the contents of a
memory location are modified; a memory location is read or updated, but not executed; and an input-output port is
referenced.

Setting a special bit enables the generation of the debug exception following any reference to debug registers, even
when the privileged code tries to read or modify them. A competently designed debugger can hide its presence by not
allowing the code being debugged to detect the debugger, no matter what privileges the code may have. (However, if
the code under study debugs itself, involving all four breakpoints, the debugger will not be able to work.)

If the T bit in TSS of the task being debugged is set, each time this task is switched to, it will cause the debug
exception before the first instruction of the task is executed. To prevent detection, the debugger may trace all
references to TSS and return counterfeit data to the program. Note that to improve performance, Windows NT does
not use TSS (to be more precise, it uses only one), rendering this debug opportunity useless.

A software breakpoint is the only thing that cannot be hidden without writing a full-scale processor emulator. This is the
one-byte code 0xCC that, placed at the beginning of the instruction, causes the INT 0x3 exception when an attempt is
made to execute it. To discover whether at least one point has been set, it is enough for the program being debugged
to count its checksum. To do this, it may use MOV, MOVS, LODS, POP, CMP, CMPS, or any other instructions; no
debugger is capable of tracing and emulating any of them.

Software breakpoints are recommended only when hardware capabilities are insufficient. However, by default,
practically all contemporary debuggers (including Softice) always set software breakpoints, ra ones.
his can be successfully used in protection mechanisms, examples of which are given in the "How to Counteract

racind" section.




s



Processing Exceptions in Real and Protected Modes

When the debug exception (or any other exception) arises, the processor places the contents of the flags register and
the address of the following instruction (or the current one, depending on the exception) to be executed onto the stack.
Only then does it pass control to the debugger.

In real mode, the flags with the return address are placed onto the stack of the program being debugged, making
debugging easy to detect. It is enough to keep control over the integrity of the stack contents above the stack pointer.
One option is to point to the top of the stack. In this case, it will be impossible to add new data on the stack, and the
debugger will be unable to work.

Another situation that arises in protected mode is that the exception handler may reside in its own address space and
not use any resources (including the stack) of the application being debugged. In principle, a debugger competently
designed for protected mode cannot be detected or disabled — even by the privileged code being executed in the zero
ring.

This is true for Windows NT, but not for Windows 9x; the latter operating systems do not use all the advantages of
protected mode, and they always litter the stack of the task, whether or not it is being debugged.




How Hackers Break Programs

Generally, revealing a protective mechanism is no problem for the hacker. What is really difficult is finding it in many
megabytes of the application being cracked. Today, few people use automatic tracing for this purpose; hardware
breakpoints have supplanted it.

For example, let's suppose that a protection requests a password, then checks its authenticity (for example, by
comparing it with a reference value). Depending on the result of the check, the protection passes control to an
appropriate branch of the program. The hacker may crack this protection without even going into the authentication
algorithm. The hacker simply enters the first password that comes to mind (not necessarily the correct one), finds it in
the memory, sets a breakpoint on the first character of the password string, waits for the debugger to appear that has
tracked referencing the password, exits the comparison procedure, and corrects the condition of the jump so that the
desired branch of the program always gains control.

The time needed to remove this sort of protection is measured in seconds! Such programs are usually cracked before
they reach a legal consumer. Fortunately, this can be counteracted.




Protecting Programs

No matter where the key information comes from — a register, a file, the keyboard — a hacker can determine its
location in memory and set a breakpoint on it almost instantly. Preventing this is impossible, but a mean trick can be
played on the hacker: Instead of allowing the key information to be analyzed immediately after it is received, it can be
passed as an argument to several functions that do something with it, then transfer it to other functions. These
functions, in turn, transfer it to the following ones.

The protective mechanism may be built into everything (the file-open procedure, a program for calculating salaries,
etc.). Explicit checks are not recommended: It is better if, in the case of incorrect key information, the called function
returns an incorrect result but does not signal the mistake. At first glance, the broken program will work normally. The
fact that it works incorrectly will be detected only later (for example, if it displays one result and prints another). To
secure the legal user against the erroneous input of the password, it is enough to explicitly compute the checksum in
one place; the checksum will not give the hacker any information about the true value of the password.

Thus, protection is "smeared" around the program and buffers containing key data are duplicated repeatedly. The
hacker will not have enough breakpoints or the patience to analyze the huge volume of code manipulated with tracing
references. It is even better if the buffers that check the key information also are used to store service data, accessed
as frequently as possible. This will prevent the hacker from quickly separating the protective mechanism from other
code of the application.

Since most hackers set a breakpoint on the beginning of the control buffer, it is reasonable to place the "stub" in the
first four bytes of the key; the stub is either not referenced at all, or it is manipulated by a protection simulator, which
keeps the hacker on the wrong track.

In such a situation, the hacker only can undertake a laborious study of all code that directly or indirectly manipulates
key information (and that comprises many megabytes of disassembler listing). If the crucial part of code is encrypted
but not decrypted completely at any moment of running the program (i.e., each function is decrypted when entered and
encrypted again when exited), the hacker will be unable to obtain a dump ready for disassembling, and will be
compelled to trace. This is where the second surprise will be waiting.




How to Counteract Tracing

The basic possibility of creating completely "invisible" debuggers mainly remains a possibility: Most can be detected by
even nonprivileged code.

The severest criticism is caused by using the 1-byte 0xCC code to set a breakpoint, instead of charging with the task
the debug registers specially intended for this. Softlce, Turbo Debugger, Code Viewer, and the debugger integrated in
Microsoft Visual Studio all use 0xCC. The last debugger uses breakpoints when it runs a program in step-by-step
mode, placing the notorious OxCC byte at the beginning of the next instruction.

A trivial integrity self-check reveals breakpoints that indicate debugging. Statements like if (CalculateMyCRC()
I=MyValidCRC) {printf("Hello, Hacker\n"); return;} are not recommended, because it is easy to discover and neutralize
them by correcting the conditional jump so it always transfers control to the necessary branch of the program. It is
better to decrypt the critical data or some code using the obtained checksum value.

A simple protection mechanism may look like this:

Listing 236. A Simple Protection Mechanism

int main(int argc, char* argv[])

{

/I The ciphered string "Hello, Free World!"

char sO[]="\x0C\x21\x28\x28\x2B\x68\x64\x02\x36\
\x21\x21\x64\x13\x2B\x36\x28\x20\x65\x49\x4E";

__asm
{
BeginCode: ; The beginning of the code
; being debugged
pusha ; All general-purpose
; registers are saved.
lea ebx, sO ; ebx=&s0[0]
GetNextChar: ;do
XOr eax, eax ;eax =0;
lea esi, BeginCode ; esi = &BeginCode
le ecx, EndCode ; The length of code
sub ecx, esi ; being debugged is computed.
HarvestCRC: ; do
lodsb ; The next byte is loaded into al.
Add eax, eax ; The checksum is computed.
loop HarvestCRC ; until(--cx>0)
xor [ebx], ah ; The next character is decrypted.
Inc ebx ; A pointer to the next character
cmp [ebx], O ; Until the end of the string
jnz GetNextChar ; Continue decryption
popa ; All registers are restored.
EndCode: ; The end of the code being debugged
nop ; A breakpoint is safe here.
}
printf(l s0O); ; The string is diplayed.
return O;
}

After starting the program normally, the line "Hello, Free World!" should appear on the screen. But when the program is
run under the debugger, even with at least one breakpoint set within the limits of BeginCode and EndCode, senseless
garbage like "Jgnnm."Dpgg"Umpnf#0" will show up on the screen. Protection can be strengthened considerably if the



procedure computing the checksum is placed into a separate thread engaged in another useful process, making the
protective mechanism as unobtrusive as possible.

In general, threads are great things that demand a special approach. It is difficult for a human to recognize that a
program can run simultaneously in several places. Commonly used debuggers have a weak point: They debug each
thread separately, never simultaneously. The following example shows how this can be used for protection.

Listing 237. The Weakness of Debugging Threads Separately

/I This function will be executing in a separate thread.

/I lts purpose is to alter imperceptibly the case of the characters
/l'in the string that contains the user name.

void My(void *arg)

{
int p=1;
/I This is a pointer to the byte being encrypted.
/I Note that encryption is not carried out
/I from the first byte, since this allows the breakpoint
/I set at the beginning of the buffer to be bypassed.
/I If the line feed is not encountered, execute.
while ( ((char *) arg) [p] !="\n")
{
/I 1f the next character is not initialized, wait.
while( ((char *) arg) [p]<0x20 );
/I The fifth bit is inverted.
/I This toggles the case of the Latin characters.
((char *) arg) [p] "=0x20;
/I A pointer to the next byte being processed
p++;
}
}

int main(int argc, char* argv([])
{
char name[100];
/I A buffer containing the user name

char buff[100];
/I A buffer containing the password

/I The buffer of the user name is stuffed with zeroes.
/I (Some compilers do this, but not all.)
memset (&name[0], 0, 100);

/I The My routine is executed in a separate thread.
_beginthread(&My, NULL, (void *) &name[0]);

/I The user name is requested.
printf("Enter name:"); fgets(&namel[0], 66, stdin);

/I The password is requested.

/I Note: While the user enters the password, the second

I/l thread has enough time to alter the case of all

/I characters of the user name. This is not evident

/I and does not follow from the analysis of the program,

/I especially if it is studied under a debugger that poorly

/I shows the mutual influence of the program's components.
printf("Enter password:"); fgets(&buff[0], 66, stdin);

/I The user name and the password are compared
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Counteracting Breakpoints

Breakpoints set on major system functions are powerful weapons in the hands of a hacker. Suppose that protection
tries to open a key file. Under Windows, the only documented way of doing this is to call the CreateFile function
(actually, CreateFileA or CreateFileW for the ASCII or UNICODE name of the file, respectively). All other functions
inherited from early Windows versions, such as OpenFile, serve as wrappers to CreateFile.

Knowing this, the hacker may set a breakpoint on the starting address of the beginning of this function (which is known
to the hacker), and instantly locate the protection code by calling this function.

However, not all hackers know that the file can be opened in other ways: by calling the ZwCreateFile (or NtCreateFile)
function exported by NTDLL.DLL, or by addressing the kernel directly via a call to the INT 0x2Eh interrupt. This is true
not only for CreateFile, but for all functions of the kernel. Interestingly, no privileges are needed for this. Such a call can
even originate from an application code.

This trick will not stop an experienced hacker for long, but it is worth preparing a small surprise by placing the call of
INT Ox2E in the __try block. Control will be gained not only by the system kernel, but also by this exception's handler in
the __try block. The hacker, without the source code, cannot determine quickly whether this call has any relation to the
__try block. Hence, the hacker easily can be led astray — it is enough to simulate opening a file without actually
opening it. Besides, nothing prevents the INT 0x2E interrupt from being used to organize the interaction of the program
components; it will be difficult for the hacker to distinguish the user's call from the system's call.

Now, what can be done with functions of the USER and GDI modules (for example, GetWindowsText) that are used to
read the user-entered key information (as a rule, a serial number or a password)? Fortunately, practically all these
functions begin with the PUSH EBP\MOV EBP, ESP instructions. This can be executed independently by the application
code: Control can be passed not to the beginning of the function, but to three bytes lower. (Since PUSH EBP modifies
the stack, control must be transferred using JMP instead of CALL.) The breakpoint set at the beginning of the function
will not produce any effect. Such a trick may temporarily lead even a skilled hacker astray.

Finally, if the intention is to poison the hacker's life, the system function should be copied to its own stack, and control
should be transferred to it. The hacker's breakpoint will have to "retire." The greatest complexity is recognizing all
instructions with relative address arguments appropriately corrected. For example, the double word after the CALL
instruction represents not an address of the jump, but the difference between the target address and the address of
the instruction next to the CALL instruction. Moving the CALL instruction to a new place requires a correction of its
argument. This task is not as complex as it might initially seem to be. In addition, the result justifies the means: Each
time the function starts, its address can be changed randomly. Moreover, by checking the integrity of code, the
software breakpoints can easily be revealed; the number of hardware points simply will not be sufficient for all calls.

Hardware breakpoints set on memory are even easier to counteract. There are only four such breakpoints, and each
may control no more than a double word. Therefore, the hacker may control simultaneously no more than 16 bytes of
memory. If references to the buffers containing the key information do not occur consecutively (byte-after-byte from
beginning to end), but occur randomly, and if the quantity of buffers is more than four, it becomes impossible to trace
all read or write operations on them.

Some debuggers can set a breakpoint on a memory range, but this feature is questionable: The only way to control
the whole area is to trace the program being investigated. This is done by checking whether the next instruction
addresses this area and, if it does, generating an exception.

Many instructions work with memory. It is possible to invent unexpected combinations. (For example, to point the stack
pointer to the required memory location, then toliﬂ-aammﬁt contains.) The exception that will arise in
this case can get rid of the debugger. (See the "How to Counteract Tracind" section.)

Thus, counteracting checkpoints is no problem for the protection mechanism.

As previously mentioned, the software breakpoint is a one-byte instruction, 0xCC, that generates the 0x3 exception on
an attempt to execute it. The handler of INT 0x3 gains control and can do whatever it wishes with a program. However,



before the interrupt handler is called, the current values of the flags register, the pointer of the code segment (the CS
register), and the instruction pointer (the IP register) are placed onto the stack. In addition, the interrupts are disabled
(the IF flag is cleared), a trap flag is cleared. Therefore, a call of the debug interrupt does not differ from a call of
any other interrupt (see ﬁ

To learn the point of the program in which the halt has occurred, the debugger pulls the saved values of registers off
the stack, taking into account that CS:IP points to the next instruction to be executed.

Breakpoints can tentatively be divided into two categories: breakpoints built into the program by the developer and
dynamic breakpoints set by the debugger itself. The first category is clear: To stop the program and pass control to the
debugger at a certain place, it is necessary to write __asm{int 0x3}.

It is more complex to set a breakpoint in an arbitrary place of the program. The debugger should save the current
value of the memory location at the specified address, then write the code 0xCC there. Before exiting the debug
interrupt, the debugger should return everything to its former place, and should modify IP saved in the stack so that it
points to the beginning of the restored instruction. (Otherwise, it points to its middle.)
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Figure 37: The contents of the stack when the interrupt routine is entered

What are the drawbacks of the breakpoint mechanism of the 8086 processor? The most unpleasant is that the
debugger must modify code directly when it sets the breakpoints.

Softlce implicitly places the breakpoint at the beginning of each next instruction when it traces the program using Step
Over (the <F10> key). This distorts the chesksum used by protection.

The simplest solution to this problem is instruction-by-instruction tracing. Of course, this is a joke; it is necessary to set
a hardware breakpoint. In a similar situation, our ancestors (the hackers of the 1980s) usually decrypted the program
manually and replaced the decrypting procedure with the NOP instructions. As a result, debugging the program did not
present a problem (if there were no other traps in protection). Before IDA appeared, the decrypting procedure had to
be written in C (Pascal, BASIC) as an independent program. Now this task is easier, since decrypting has become
possible in the disassembler itself.

Decrypting is reduced to the reproduction of the decrypting procedure in the IDA-C language. In this case, the
checksum from BeginCode to EndCode must be calculated, taking into account the sum of the bytes and using the
lower byte of the checksum to load the following character. The obtained value is used to process the s0 string using
the exclusive OR operation. All this can be done using the following script (assuming that the appropriate labels are
already in the disassembled code):

Listing 239. Reproducing the Decrypting Mechanism in IDA-C

auto a; auto p; auto crc; auto ch;
for (p=LocByName("s0"); Byte(p) !=0; p++)
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At the first stage, the checksum is computed. The file is loaded in HIEW, and the necessary fragment is found. Then,
the <Enter> key is pressed twice to toggle in the assembler mode, the <F8>+<F5> key combination is pressed to jump
to the entry point, and the main procedure in the start code is found. Next, the <F3> key is pressed to enable editing
the file. The editor of the decryptor is called using the <CtrI>+<F7> key combination. (This combination varies from
one version to another.) Finally, the following code is entered:

mov bl, al

add ebx, ebx

Another register can be used instead of EBX, apart from for EAX, since HIEW clears EAX as it reads out the next byte.
Now, the cursor is brought to the 0x401019 line and the <F7> key is pressed to run the decrypt up to, but not including,
the 0x401040 line. If all is done correctly, the high-order byte BX should contain the value 0x44, precisely the checksum.

In the second stage, the encrypted line is found (its offset, .406030, is loaded into ESI), and "xor-ed" by 0x44. (The <F3>
key is pressed to toggle the editing mode, the <CtrI>+<F8> key combination is used to specify the key for encrypting,
0x44, then the <F8> key is pressed to conduct the decryptor along the line.)

NoTrace.exe | W PE 00006040 <Editor> 28672 ? Hiew 6.04 (c)SEN
00006030: 48 65 6C 6C-6F 2C 20 46-72 65 65 20-57 6F 72 6C Hello, Free World
00006040: 20 65 49 4E-00 00 00 00-7A 1B 40 00-01 00 00 00 eIN z$@ $

All that is left is to patch XOR in the 0x401036 line with the NOP instructions; otherwise, when the program is started,
XOR will spoil the decrypted code (by encrypting it again), and the program will not work.

After the protection is removed, the program can be debugged without serious consequences for as long as
necessary. The checksum is still computed, but not used. (If a check for CRC correctness is in the protection, it must
be neutralized as well. For clarity, such a check was not included in this example.)




How to Reveal Debugging Using Windows

In his book "Windows 95 System Programming Secrets," Matt Pietrek describes the structure of the Thread
Information Block (TIB), after discussing the purpose of many undocumented fields. The double word located at the
offset 0x20 from the beginning of the TIB structure is of special interest: It contains a context of the debugger if the
given process is debugged; otherwise, it contains zero. The TIB is accessible through the selector loaded into the FS
register. It can be read by application code without any problems.

If the FS: [0x20] double word is not equal to zero, the process is being debugged. This is so tempting that some
programmers have included a check for this in protection code, ignoring the fact that it is undocumented. As a result,
these programs cannot be executed under Windows NT; this OS stores not the context of the debugger in this field,
but the process identifier, which never equals zero. The protection wrongly believes that the process is being
debugged.

This issue was considered in detail by Pietrek in Microsoft Systems Journal, May 1996, in the paper "Under The
Hood." Pietrek presented the following structure:

Listing 240. Checking for FS:[0x20]

union /I 1Ch (NT/Win95 differences)
{
struct // Win95 fields
{
WORD TIBFlags; / 1Ch

WORD Winl6MutexCount; // 1Eh
DWORD DebugContext; /1 20h
DWORD pCurrentPriority; // 24h

DWORD pvQueue; /I 28h Message Queue selector
} WIN95;
struct // WinNT fields
{
DWORD unknownl; /' 1Ch
DWORD processiD; /1 20h
DWORD threadID; 1l 24h
DWORD unknown2; /1 28h
} WINNT;
} TIB_UNIONZ;

This confirmed that undocumented features should never be used needlessly. As a rule, using them brings more
problems than benefits.




Counteracting Disassemblers

Self-Modifying Code in Contemporary Operating Systems

A decade or two ago, in the prime of MS-DOS, programmers often used self-modifying code. No serious protection
could do without it. It also could be encountered in compilers that compiled code into memory, unpackers of
executable files, polymorphic generators, and so on.

In the mid-1990s, users began a massive migration from MS-DOS to Windows 95/NT. Developers had to think about
porting the gained experience and programming techniques to the new platform; the uncontrolled access to hardware,
memory, and operating-system components, and smart programming tricks concerning them, had to be forgotten. In
particular, directly modifying the executable code of applications became impossible, since Windows protects it from
inadvertent changes. This gave birth to the ridiculous belief that, under Windows, creating self-modifying code is
impossible without using VxD and the undocumented capabilities of the operating system.

Actually, at least two documented ways of changing application code work equally well under Windows starting from
95, with guest-user privileges being sufficient.

First, kernel32.dll exports the WriteProcessMemory function, intended, as follows from its name, for modifying the
memory of a process. Second, practically all operating systems, Windows and Linux included, allow the code placed
on the stack to be modified.

The task of creating self-modifying code can be solved just by using high-level languages (for example, C/C++, or
Pascal), without employing the assembler.

The material of this section mostly focuses on the Microsoft Visual C++ compiler and on 32-bit executable code.




The Architecture of Windows Memory

Creating self-modifying code requires knowledge of certain subtleties of the Windows architecture. These subtleties
are not elucidated in the documentation, but they do not yet have the status of undocumented features, because they
are implemented on all Windows platforms and are used actively by Microsoft Visual C++. Hence, the company does
not plan any changes; otherwise, the code generated by this compiler will not work, an unacceptable situation for
Microsoft.

To address 4 GB of virtual memory allocated for a process, Windows uses two selectors. One is loaded into the CS
segment register; the other is loaded into the DS, ES, and SS registers. The selectors use the same base address of
memory equal to zero, and have identical limits of memory space equal to 4 GB.

Note Besides the segment registers listed above, Windows also uses the FS register, which it loads with the segment
selector containing the Thread Information Block (TIB).

Actually, only one segment contains both code and data, as well as the stack of a process. Therefore, control of the
code located in the stack is passed using the near call, or a jump. Using the SS prefix to access the contents of the
stack is unnecessary. Although the value of the CS register is not equal to the value of the DS, ES, and SS registers,
the MOV dest, CS:[src], MOV dest, DS:[src], and MOV dest, SS: [src] instructions address the same memory location.

Memory areas containing code, the stack, and data differ in the attributes of pages belonging to them. Code pages
admit reading and executing, data pages admit reading and writing, and the stack admits reading, writing, and
executing simultaneously.

In addition, each page has a special flag that determines the level of privilege necessary for accessing the page.
Certain pages, such as those belonging to the operating system, require the rights of the administrator, granted only to
the code of the zero ring. Application programs executing in ring 3 have no such rights, and any attempt to reference
a protected page causes an exception.

Only the operating system or the code executing in the zero ring can manipulate page attributes or associate pages
with linear addresses. There are hatches in Windows 95/98 protection that allow an application code to raise the
privileges to the administrator level. However, the benefit of using them is doubtful: The user is bound to this operating
system and is denied the opportunity to use the same trick on Windows NT/2000.

Note A ridiculous fable circulating among novice programmers says that if someone addresses the code of a program
using the instruction preceded by the DS prefix, Windows will allow modification of this code. This is incorrect.
Regardless of the addressing used, the system allows the code to be addressed, not modified, since the
protection works at the level of physical pages, not logical addresses.




Using the WriteProcessMemory Function

If the number of bytes of a process needs to be changed, the simplest method is to call the WriteProcessMemory
function. This modifies the existing memory pages whose supervisor flags are not set (i.e., all pages accessible from
ring 3 in which applications are running). Trying to change critical data structures of the given operating system (page
directory, or page table, for example) using WriteProcessMemory is senseless, since these are accessible only from the
zero ring. Therefore, this function does not represent any threat to the safety of the system, and is successfully called
irrespective of the level of the user privileges. (I once heard the statement that WriteProcessMemory requires rights for
debugging applications, but this is not so.)

The memory process on which the write operation is to be carried out should first be opened by the OpenProcess
function, with the PROCESS_VM_OPERATION and PROCESS_VM_WRITE access attributes. Programmers often
choose a shorter way, setting the PROCESS_ALL_ACCESS value to all attributes. This is admissible, although it is
considered bad programming style.

A simple example of using the WriteProcessMemory function to create the self-modifying code is given in . It
replaces the instruction of the infinite loop JMP short $-2 with a conditional jump JZ $-2, which continues normal
execution of the program. This is a good way of complicating the analysis of the program for the hacker, especially if
the call of WriteMe is located not in the vicinity of changeable code, but in a separate thread. It is even better if the
modified code looks natural and does not arouse any suspicions. In such a case, the hacker may waste a lot of time
wandering along the branch of code that never gains control during the program execution.

Listing 241: Using WriteProcessMemory to Create Self-Modifying Code

int WriteMe(void *addr, int wb)

{
HANDLE h=OpenProcess(PROCESS_VM_OPERATION|PROCESS_VM_WRITE,
true, GetCurrentProcessld());
return WriteProcessMemory(h, addr, &wb, 1, NULL);
}
int main(int argc, char* argv[])
{
_asm{
push 0x74 ; IMP --> > JZ
push offset Here
call WriteMe
add esp, 8
Here: JMP short here
}
printf("#JMP SHORT $-2 was changed to JZ $-2\n");
return O;
}

To save random-access memory, Windows shares code between processes. What will happen if the second copy of
the self-modifying program is started? Will the operating system create new pages, or will it send the application to the
code already being modified? The documentation on Windows NT/2000 says these systems support copy on write
(i.e., the code pages are automatically duplicated on an attempt to update them). On the contrary, Windows 95/98 do
not support this feature. Does this all mean that all copies of the self-modifying application will be compelled to work
with the same code pages, which inevitably will result in conflicts and failures?

No, although copying on write is not implemented in Windows 95/98, this is taken care of by the WriteProcessMemory
function, which creates copies of all pages belonging to different processes and being modified. Due to this, the
self- modifying code works well under Windows 95/98/Me/NT/2000. However, remember that all copies of the
application modified in any other way (the MOV instruction of the zero ring, for example) and started under Windows



95/98 will share the same pages of a code, with all consequences following from this.

Now, a few words about limitations: Using WriteProcessMemory is only reasonable in compilers that compile into
memory, or in unpackers of executable files. Using it in protection is a little naive. A fairly experienced hacker will
quickly find a dirty trick, having seen this function in the import table. Then, the hacker will set a breakpoint on the call
of WriteProcessMemory, and will control each operation of writing to memory, which does not fit the plans of the
protection developer.

Another limitation of WriteProcessMemory is its inability to create new pages; only the pages already existing are
accessible to it. But what can be done, for example, if another amount of memory must be allocated for the code
dynamically generated "on the fly?" Calling the heap-control functions, such as malloc, will not be helpful, since
executing the code in the heap is not permitted. But the possibility of executing code in the stack is helpful.




Executing Code in the Stack

Executing code in the stack is permitted because many programs and the operating system need an executable stack
to perform certain system functions. This makes it easier for compilers and compiling interpreters to generate code.

However, the potential threat of an attack increases with this. If the execution of code in the stack is permitted, under
certain conditions, the implementation bugs cause control to be passed to user-entered data. This gives the hacker the
opportunity to pass harmful code to the remote computer and execute it. Patches for the Solaris and Linux operating
systems can be installed to prohibit the execution of code in the stack, but they have not become commonly used
since they make it impossible to run several programs. Most users find it easier to resign themselves to the threat of
an attack than to remain without necessary applications.

Therefore, using the stack to execute self-modifying code is admissible and independent of the system (i.e., it is
universal). Besides, such a solution eliminates the following drawbacks of the WriteProcessMemory function.

First, it is extremely difficult to reveal and trace the instructions that modify an unknown memory location. The hacker
will have to laboriously analyze the protection code without any hope of quick success (provided that the protective
mechanism is implemented without serious bugs that facilitate the hacker's task).

Second, at any moment, the application may allocate as much memory for the stack as it sees fit, and then, when it
becomes unnecessary, free that space. By default, the system allocates 1 MB of memory for the stack. If this memory
appears to be insufficient to solve the task, the necessary quantity can be specified when the program is configured.

Fortunately, for programs being executed in the stack, John von Neumann's principle is fair: Program code can be
considered data at one moment and executable code at another. This is just what is needed for normal functioning of
all unpackers and decryptors of executable code.

However, programming code that will be executed in the stack involves several specific issues that will be covered in
the following sections.




The Pitfalls of Relocatable Code

When developing the code that will be executed in the stack, you take into account that the location of the stack is
different in Windows 9x, Windows NT, and Windows 2000. To retain operability after a migration is made from one
system to another, the code should be indifferent to the address at which it is loaded. Such code is called relocatable.
There is nothing complex about creating it; you only need to follow several simple conventions.

Fortunately, in microprocessors of the Intel 80x86 family, all short jumps and near calls are relative (i.e., they do not
contain a linear target address, but rather, the difference between the target address and the address of the next
instruction). This considerably simplifies the creation of relocatable code, but, at the same time, it imposes certain
restrictions.

What happens if the void Demo() {printf("Demo\n");} function is copied to the stack, and control is passed to it? Since the
CALL instruction that calls the printf function has moved to a new place, the difference between the address of the
function being called and the address of the instruction next to CALL will change. Therefore, control could be passed to
any code different from printf. It most likely will appear to be "garbage" and cause an exception, with the subsequent
abnormal termination of the application.

In assembler programs, such a restriction can be bypassed easily with register addressing. A relocatable call of the
printf function may look simplistic (for example, like LEA EAX, printARNCALL EAX). An absolute linear address, not a
relative one, will be placed in the EAX register (or any other general-purpose register). Irrespective of the position of
the CALL instruction, control will be passed to the printf function.

However, such an approach requires knowledge of support for inline assembler inserts by the compiler, which is not
very pleasant for application programmers uninterested in instructions and the structure of the microprocessor.

To solve this using a high-level language exclusively, the stack function must pass the pointers (as arguments) to the

functions called by it. This is a little inconvenient, but a shorter way does not seem fo exist. A simple program that
shows how functions are copied to and executed in the stack is given in

Listing 242: How a Function Is Copied to and Executed in the Stack

void Demo(int (*_printf) (const char *,...))
{

_printf("Hello, World\n");

return;

int main(int argc, char* argv([])
{
char buff[1000];
int (*_printf) (const char *,...);
int (*_main) (int, char **);
void (*_Demo) (int (*) (const char *,...));
_printf=printf;

int func_len = (unsigned int) _main - (unsigned int) _Demo;
for (int a=0; a<func_len; a++)

buff[a] = ((char *) _Demo)[a];

_Demo = (void (¥) (int (*) (const char *,...))) &buff[0];

_Demo(_printf);
return O;
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The Pros and Cons of Optimizing Compilers

When using high-level languages to develop code that will be executed in the stack, the distinctions between the
implementations of the compilers being used must be considered before a choice is made, and the documentation
supplied with compilers must be studied in depth. In most cases, the code of a function copied to the stack will fail on
the first attempt, especially if optimized compiling is enabled.

This happens because in a pure high-level language such as C or Pascal, it is impossible, in principle, to copy the
code of a function to the stack (or elsewhere): The language standards do not specify how compiling should be carried
out. The programmer may obtain the pointer to a function, but the standard does not specify how to interpret it. From
the programmer's point of view, it represents a "magic number," the purpose of which is known to only the compiler.

Fortunately, most compilers use almost identical logic to generate code, allowing the application program to make
some assumptions about the organization of the compiled code.

In particular, the program given in tacitly assumes that the pointer to the function coincides with the
beginning of this function, and that the whole body of the function is located just behind the beginning. Such code (the
most obvious to common sense) is generated by an overwhelming majority of compilers, but not by all of them.
Microsoft Visual C++, when working in the debug mode, inserts "adapters" instead of functions, and allocates
functions in a different place. As a result, the contents of the "adapter," not the body of the function, are copied to the
stack. Microsoft Visual C++ can be forced to generate correct code if the Link incrementally checkbox is cleared. The
name of this option may differ considerably in different compilers or, at worst, may be absent. If so, either
self-modifying code or the compiler should be abandoned.

Another problem is how to determine reliably the length of the body of the function. C does not provide any means of
doing this; the sizeof operator returns the size of the pointer to a function, not the size of the function itself. However,
as a rule, compilers allocate functions in memory according to the order in which they are declared in the source code;
hence, the length of the body of a function is equal to the difference between the pointer to the given function and the
pointer to the function following it. Since Windows compilers use 32-bit integers to represent pointers, they can be
converted to unsigned int type without any serious consequences. Then, various mathematical operations can be
carried out on them. Unfortunately, optimizing compilers do not always allocate functions in such a simple order. In
some cases, they even "unwrap" them, substituting the contents of a function for the call instruction. Therefore, the
corresponding optimization options (if any) must be disabled.

Yet another insidious feature of optimizing compilers is the deletion of all variables that are not used — from their point
of view. For example, in the program given in , something is written to the buff buffer, but nothing is read

from that place. Most compilers are unable to recognize that control was passed to the buffer (including Microsoft
Visual C++); therefore, they omit the copying code. That is why control is passed to the uninitialized buffer and
undesired consequences follow. If similar problems arise, try to clear the Global optimization checkbox, or disable the
optimization totally (a bad, but necessary, step).

If the compiled program still does not work, the most likely reason is the compiler inserts the call of a routine that
monitors the state of the stack into the end of each function. Microsoft Visual C++ behaves this way, placing the call of
the function __chkesp into the projects being debugged. (Do not search the documentation; __chkesp is not described.)
This call is relative. Unfortunately, there is no documented way of disabling it. However, in final projects, Microsoft
Visual C++ does not inspect the state of the stack when exiting the function, and everything works smoothly.




Using Self-Modifying Code to Protect Applications

After successfully passing through this ordeal, the ill-starred example will be started and will victoriously display "Hello,
World!". A reasonable question arises: What is the benefit of running a function in the stack? The answer is: The code
of a function run in the stack can be changed "on the fly;" for example, it can be decrypted.

The encrypted code severely complicates disassembling and strengthens protection. Certainly, encrypting just the
code is not a serious obstacle for a hacker equipped with a debugger or an advanced disassembler like IDA Pro.
However, anti-debugging tricks (which are numerous) are a theme for a separate discussion beyond the scope of this
book.

The simplest encrypting algorithm sequentially processes each element of the initial code using the exclusive OR
operation (XOR). Repeated processing of the encrypted code with XOR gives the initial code again.

The following example reads the contents of the Demo function, encrypts it, and writes the result into a file.

Listing 243: How to Encrypt the Demo Function

void _bild()
{
FILE *f;
char buff[1000];

void (*_Demo) (int (*) (const char *,...));
void (*_Bild) ();

_Demo=Demo;

_Bild=_bild;

int func_len = (unsigned int) _Bild - (unsigned int) _Demo;
f=fopen("Demo32.bin", "whb");

for (int a=0; a<func_len; a++)

fputc(((int) buff[a]) ~ 0x77, f);

fclose(f);

After its encrypted contents are placed into a string variable (but not necessarily just a string variable), the Demo
function can be removed from the initial code. At the appropriate moment, it may he decrypted, copied into a local
buffer, and called for execution. One of the variants of implementation is given in Listing 244

Listing 244: The Encrypted Program

int main(int argc, char* argvf[])
{

char buff[1000];

int (*_printf) (const char *,...);

void (*_Demo) (int (*) (const char *,...));

char code[]="\x22\xFC\x9B\xF4\x9B\x67\xB1\x32\x87\
\X3F\xB1\x32\x86\x12\xB1\x32\x85\x1B\xB1\
\x32\x84\x1B\xB1\x32\x83\x18\xB1\x32\x82\
\X5B\xB1\x32\x81\x57\xB1\x32\x80\x20\xB 1\
\x32\x8F\x18\xB1\x32\x8E\x05\xB1\x32\x8D\
\x1B\xB1\x32\x8C\x13\xB1\x32\x8B\x56\xB1\
\x32\x8A\x7D\xB1\x32\x89\x 7 7\XFA\x32\x87\
\x27\x88\x22\x7F\xF4\xB3\x73\xFC\x92\x2A\
\xB4";

_printf=printf;
int code_size=strlen(&code[0]);
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Summary

Many people consider the use of self-modifying code a "bad" programming style, emphasizing the lack of portability,
poor compatibility with various operating systems, the necessity of using the assembler, and so on. With the
introduction of Windows 95/NT, this list has been replenished with one more conclusion: "Self-modifying code is
suitable only for MS-DOS, and cannot be used under normal operating systems, which serves it right."

As shown in this chapter, all these claims, to put it mildly, are incorrect. The inefficiency of existing protection
(programs usually are broken before they reach legal consumers), and the huge number of people aspiring to make
their livings pressing keys, testifies to the necessity of strengthening protection by any accessible means, including
self-modifying code.




An Invitation to the Discussion, or New Protection Tips

In concluding this book, | would like to share my experiences from creating protection that is, in theory, impossible to
break. To be more precise, | believe breaking it on the typical home computer would take thousands or even millions
of years.

The analysis of code can be thwarted successfully only by encrypting the program. However, the processor cannot
directly execute the encrypted code. Therefore, it must be decrypted before control is passed to the program. If the key
is contained within the program, the reliability of the protection is close to zero. At best, the developer can complicate
the search for and acquisition of the key by thwarting the debugging and disassembling of programs.

It is quite another matter if the key is outside the program. Then, the reliability of protection is defined by the reliability
of the crypt-algorithm used (provided that the key cannot be intercepted). Many crack-proof ciphers reliably secure
against the attacks of ordinary hackers have been described in detail and published.

In general, protection consists of implementing a certain mathematical model in a program that is used to generate the
key. Different branches of the program are encrypted using various keys. To work out the keys, it is necessary to know
the state of the model at the moment control is passed to the corresponding branch of the program. The code is
dynamically decrypted at run time. To decrypt it entirely, all possible states of the model need to be tried sequentially.
If there are lots of them, which is easy to achieve, the reconstruction of all code will be practically impossible.

To implement this idea, | have created a special event-oriented programming language. In this language, events
represent the only means of calling a subroutine. Each event has an ID and one or more arguments. An event may
have any number of handlers or none, in which case, an error is returned to the code being called.

Using the event name and the value of arguments, the event manager generates three keys: The first is based on the
event name only, the second on the arguments only, and the third on the name and arguments. (See the
section.) Then, using the keys obtained, the manager tries to decipher sequentially all event handlers. If decrypting is
successful, the handler is ready to process the given event, and control is passed to it.

The algorithm of encrypting should be chosen so that the reverse operation is impossible. Thus, determining which
event the given handler processes only is possible by trying all the variants. To prevent this, a context dependence
has been added to the language that generates an additional series of keys, which take into account several previous
events. This allows handlers to be installed for any sequences of user actions, such as opening the file named "my
file," writing the line "my line" in it, and renaming it "not my file."

Obviously, trying the combinations of all events with all conceivable arguments will take an infinite amount of time.
Reconstructing the source code of the program thus protected will not be possible before each of its branches gains
control at least once. However, the frequency of calling different branches is not identical; it is very low for some of
them. For example, a special handler can be installed for the word "pine" entered in the text editor. This handler may
carry out some additional checks for the integrity of the program code, or for the cleanliness of the license for the
software being used.

The hacker will not be able to figure out whether the program is cracked and end quickly. Careful and laborious testing
will be necessary, but even carrying out this will not be helpful.

The trial periods of demo versions are limited in the same way. Engaging the real-time clock is useless, as it easily can
be set back, confusing the protection. It is more reliable to base it on the creation dates of files being opened; even if
the clock is set back, the files created by other users mostly have the correct creation dates. However, the hacker will
be unable to figure out either the algorithm of determining the date or the expiration of the trial period of the product. In
principle, the date can be found, but what does this achieve? Modification to this code can be easily prevented; it will
be enough if the length of the crypted code is sensitive to any changes to the source code. In this case, the hacker will
be unable to correct the "necessary" byte in the protection handler and encrypt it again. All other handlers will need to
be decrypted and modified (if they monitor the offset at which they are located), but this is impossible; the keys
corresponding to them are unknown beforehand.



The essential drawbacks of the solution being offered are low performance and high complexity of implementation.
While the complexity of implementation can be tolerated, the performance imposes serious restrictions on the field of
application. However, the algorithm can be considerably optimized, all modules crucial to performance can be left
uncrypted, or each handler can be decrypted only once. Does this technique, in principle, really allow the creation of
applications that cannot be investigated, or there is some mistake in the above argumentation? The opinions of
colleagues specializing in information protection would be interesting.

Explanation

Three keys are necessary to avoid an explicit check for the values of arguments, which can be easily revealed by the
person analyzing the code. Suppose that the event KEY (key_code) is generated each time a key is pressed on the
keyboard. The handler that reads the input information should lock itself only to the code of the event (KEY), and
should receive the entered symbol as an argument.

If one key (or a combination of keys) is reserved for a special purpose (for example, for using some additional
functions in the program), its handler may become locked to KEY and key_code simultaneously without being disclosed.
This is possible because the correct key is produced by a unique combination of KEY and key_code only, and an
explicit check for the conformity of the pressed character to the secret code is not carried out.

Looking to arguments allows the sequences sought to be caught in data streams, irrespective of how these sequences
were obtained. For example, an authentication procedure expecting the password "MyGoodPassword" does not care
where it came from (the keyboard, a remote terminal, a file, etc.).

Such an approach considerably simplifies programming and reduces the dependence of one module on the other. The
program represents a set of handlers automatically switched by arising events. There is no determinism! This is
reminiscent of the interaction of a biological cell with the environment, and soon may become a promising trend.




Hacker Disassembling Uncovered—How to...

This index will help you find the solutions to specific problems. It is often difficult to locate the information you need in
a certain situation, even if this information is contained in the book.

...Add the Constant to the Pointer Written into the Pointer-Type Variable

...Analyse the Code That Handles ASCIIZ Strings

...Analyse the Code That Manipulates Strings

...Break if (a==b) || (a!=0)) into Elementary Statements

...Call a Function Using a Pointer

...Call a Function Using a Pointer and a Complex Calculation of the Target Address
...Call a Pure Virtual Function

...Call a Static Virtual Function
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...Call a Virtual Function
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...Change a Loop with an Increment for a Loop with a Decrement
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...Compare a Conditional Jump and a Conditional Move
...Compile a Constructor/Destructor for a Global Object
...Compile a Constructor/Destructor for an Object on the Stack
...Compile Elementary Integer Relationships Using Visual C++
...Compile of a Loop with a Postcondition

...Compile the Disassembled Code Eliminating Structures at Compile Time
...Compile the Example with the ? Conditional Operator
...Compile the if((a==b) && (a!=0)) Expression

...Compile the if((a==b) || (a==c) && a(!=0))Statement
...Compile the Program Using Aggressive Optimization
...Convert a Constant into an Offset

...Convert a Sequence of Elementary Conditions

...Convert the IF-THEN-ELSE Statement

...Copy a Function to the Stack

...Create a Simple Protection Mechanism

...Create Self-Modifying Code

...Create the Simplest System of Authentication

...Debug Threads Separately

...Declare Objects Using thestruct or the class Keyword

...Determine Types in Combined Expressions
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...Disassemble the Copied Fragment



...Distinguish an Imitation from a True Virtual Table

...Distinguish Pascal fromstdcall

...Distinguish Register Variables from Temporary Variables

...Distinguish the switch Statement from thecase Statement

...Encrypt the Demo Function

...Execute a Function In the Stack

...Execute the Copying Script

...Execute the Puzzle-Like Code

...Execute the Seemingly Complex Code
...Execute the Tangled Code

...Identify a break Statement

...Identify a for Loop with Several Counters
...Identify an Object and Its Structure
...Identify C Strings

...Identify Complex Operations

...Identify Derived Functions

...Identify DIIMain by the Failed Initialization Code

...Identify for Loops

...Identify Library Functions

...Identify Local Variables

...Identify Register Variables

...Identify Strings

...Identify the — Operator

...Identify the % Operator

...Identify the * Operator
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